IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i2p219-d197546.html
   My bibliography  Save this article

Investigating Spatial Autocorrelation and Spillover Effects in Freeway Crash-Frequency Data

Author

Listed:
  • Huiying Wen

    (School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University Road #2, Nanjing 211189, China)

  • Xuan Zhang

    (School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University Road #2, Nanjing 211189, China)

  • Qiang Zeng

    (School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
    Jiangsu Province Collaborative Innovation Center of Modern Urban Traffic Technologies, Southeast University Road #2, Nanjing 211189, China)

  • Jaeyoung Lee

    (Department of Civil, Environment and Construction Engineering, University of Central Florida, Orlando, FL 32816, USA)

  • Quan Yuan

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

Abstract

This study attempts to investigate spatial autocorrelation and spillover effects in micro traffic safety analysis. To achieve the objective, a Poisson-based count regression with consideration of these spatial effects is proposed for modeling crash frequency on freeway segments. In the proposed hybrid model, the spatial autocorrelation and the spillover effects are formulated as the conditional autoregressive (CAR) prior and the exogenous variables of adjacent segments, respectively. The proposed model is demonstrated and compared to the models with only one kind of spatial effect, using one-year crash data collected from Kaiyang Freeway, China. The results of Bayesian estimation conducted in WinBUGS show that significant spatial autocorrelation and spillover effects simultaneously exist in the freeway crash-frequency data. The lower value of deviance information criterion (DIC) and more significant exogenous variables for the hybrid model compared to the other alternatives, indicate the strength of accounting for both spatial autocorrelation and spillover effects on improving model fit and identifying crash contributing factors. Moreover, the model results highlight the importance of daily vehicle kilometers traveled, and horizontal and vertical alignments of targeted segments and adjacent segments on freeway crash occurrences.

Suggested Citation

  • Huiying Wen & Xuan Zhang & Qiang Zeng & Jaeyoung Lee & Quan Yuan, 2019. "Investigating Spatial Autocorrelation and Spillover Effects in Freeway Crash-Frequency Data," IJERPH, MDPI, vol. 16(2), pages 1-12, January.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:2:p:219-:d:197546
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/2/219/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/2/219/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
    2. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    3. Feng Chen & Suren Chen & Xiaoxiang Ma, 2016. "Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models," IJERPH, MDPI, vol. 13(6), pages 1-16, June.
    4. Huang, Helai & Song, Bo & Xu, Pengpeng & Zeng, Qiang & Lee, Jaeyoung & Abdel-Aty, Mohamed, 2016. "Macro and micro models for zonal crash prediction with application in hot zones identification," Journal of Transport Geography, Elsevier, vol. 54(C), pages 248-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yanna Yin & Huiying Wen & Lu Sun & Wei Hou, 2020. "The Influence of Road Geometry on Vehicle Rollover and Skidding," IJERPH, MDPI, vol. 17(5), pages 1-17, March.
    2. Soltani, Ali & Roohani Qadikolaei, Mohsen, 2024. "Space-time analysis of accident frequency and the role of built environment in mitigation," Transport Policy, Elsevier, vol. 150(C), pages 189-205.
    3. Tianpei Tang & Senlai Zhu & Yuntao Guo & Xizhao Zhou & Yang Cao, 2019. "Evaluating the Safety Risk of Rural Roadsides Using a Bayesian Network Method," IJERPH, MDPI, vol. 16(7), pages 1-17, April.
    4. Zheng, Qikang & Sharmeen, Fariya & Xu, Chengcheng & Liu, Pan, 2024. "Assessing regional road traffic safety in Sweden through dynamic panel data analysis: Influence of the planned innovative policies and the unplanned COVID-19 pandemic," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zeng, Qiang & Wen, Huiying & Huang, Helai & Wang, Jie & Lee, Jinwoo, 2020. "Analysis of crash frequency using a Bayesian underreporting count model with spatial correlation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Qiang Zeng & Wei Hao & Jaeyoung Lee & Feng Chen, 2020. "Investigating the Impacts of Real-Time Weather Conditions on Freeway Crash Severity: A Bayesian Spatial Analysis," IJERPH, MDPI, vol. 17(8), pages 1-15, April.
    3. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    4. Lee, Jaeyoung & Abdel-Aty, Mohamed & Jiang, Ximiao, 2014. "Development of zone system for macro-level traffic safety analysis," Journal of Transport Geography, Elsevier, vol. 38(C), pages 13-21.
    5. Abdel-Aty, Mohamed & Lee, Jaeyoung & Siddiqui, Chowdhury & Choi, Keechoo, 2013. "Geographical unit based analysis in the context of transportation safety planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 49(C), pages 62-75.
    6. Feng Chen & Xiaoxiang Ma & Suren Chen & Lin Yang, 2016. "Crash Frequency Analysis Using Hurdle Models with Random Effects Considering Short-Term Panel Data," IJERPH, MDPI, vol. 13(11), pages 1-11, October.
    7. Gao, Xing & Meng, Jing & Ling, Yantao & Liao, Maolin & Cao, Mengqiu, 2022. "Localisation economies, intellectual property rights protection and entrepreneurship in China: a Bayesian analysis of multi-level spatial correlation," LSE Research Online Documents on Economics 114290, London School of Economics and Political Science, LSE Library.
    8. Gao, Xing & Meng, Jing & Ling, Yantao & Liao, Maolin & Cao, Mengqiu, 2022. "Localisation economies, intellectual property rights protection and entrepreneurship in China: A Bayesian analysis of multi-level spatial correlation," Structural Change and Economic Dynamics, Elsevier, vol. 61(C), pages 156-165.
    9. Xu, Xuecai & Huang, Dong & Guo, Fengjun, 2020. "Addressing spatial heterogeneity of injury severity using Bayesian multilevel ordered probit model," Research in Transportation Economics, Elsevier, vol. 80(C).
    10. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    11. Mumtaz, Haroon & Theodoridis, Konstantinos, 2017. "Common and country specific economic uncertainty," Journal of International Economics, Elsevier, vol. 105(C), pages 205-216.
    12. Jesse Elliott & Zemin Bai & Shu-Ching Hsieh & Shannon E Kelly & Li Chen & Becky Skidmore & Said Yousef & Carine Zheng & David J Stewart & George A Wells, 2020. "ALK inhibitors for non-small cell lung cancer: A systematic review and network meta-analysis," PLOS ONE, Public Library of Science, vol. 15(2), pages 1-18, February.
    13. Christina Leuker & Thorsten Pachur & Ralph Hertwig & Timothy J. Pleskac, 2019. "Do people exploit risk–reward structures to simplify information processing in risky choice?," Journal of the Economic Science Association, Springer;Economic Science Association, vol. 5(1), pages 76-94, August.
    14. Francois Olivier & Laval Guillaume, 2011. "Deviance Information Criteria for Model Selection in Approximate Bayesian Computation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-25, July.
    15. Raggi, Davide & Bordignon, Silvano, 2012. "Long memory and nonlinearities in realized volatility: A Markov switching approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(11), pages 3730-3742.
    16. Angelica Gianfreda & Francesco Ravazzolo & Luca Rossini, 2023. "Large Time‐Varying Volatility Models for Hourly Electricity Prices," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 85(3), pages 545-573, June.
    17. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    18. Alessandri, Piergiorgio & Mumtaz, Haroon, 2019. "Financial regimes and uncertainty shocks," Journal of Monetary Economics, Elsevier, vol. 101(C), pages 31-46.
    19. Padilla, Juan L. & Azevedo, Caio L.N. & Lachos, Victor H., 2018. "Multidimensional multiple group IRT models with skew normal latent trait distributions," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 250-268.
    20. Svetlana V. Tishkovskaya & Paul G. Blackwell, 2021. "Bayesian estimation of heterogeneous environments from animal movement data," Environmetrics, John Wiley & Sons, Ltd., vol. 32(6), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:2:p:219-:d:197546. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.