Crash Frequency Analysis Using Hurdle Models with Random Effects Considering Short-Term Panel Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Golob, Thomas F. & Recker, Wilfred W., 2004. "A method for relating type of crash to traffic flow characteristics on urban freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(1), pages 53-80, January.
- Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
- Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
- Feng Chen & Suren Chen & Xiaoxiang Ma, 2016. "Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models," IJERPH, MDPI, vol. 13(6), pages 1-16, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Mehari Beyene Teshome & Faisal Rasool & Guido Orzes, 2024. "Mountain Logistics: A Systematic Literature Review and Future Research Directions," Logistics, MDPI, vol. 8(4), pages 1-19, November.
- Sheng Dong & Afaq Khattak & Irfan Ullah & Jibiao Zhou & Arshad Hussain, 2022. "Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations," IJERPH, MDPI, vol. 19(5), pages 1-23, March.
- Jinliang Xu & Tian Xin & Chao Gao & Zhenhua Sun, 2022. "Study on the Maximum Safe Instantaneous Input of the Steering Wheel against Rollover for Trucks on Horizontal Curves," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Feng Chen & Suren Chen & Xiaoxiang Ma, 2016. "Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models," IJERPH, MDPI, vol. 13(6), pages 1-16, June.
- Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
- Spasoje Mićić & Radoje Vujadinović & Goran Amidžić & Milanko Damjanović & Boško Matović, 2022. "Accident Frequency Prediction Model for Flat Rural Roads in Serbia," Sustainability, MDPI, vol. 14(13), pages 1-14, June.
- Lars Böcker & Patrick Amen & Marco Helbich, 2017. "Elderly travel frequencies and transport mode choices in Greater Rotterdam, the Netherlands," Transportation, Springer, vol. 44(4), pages 831-852, July.
- Huiying Wen & Xuan Zhang & Qiang Zeng & Jaeyoung Lee & Quan Yuan, 2019. "Investigating Spatial Autocorrelation and Spillover Effects in Freeway Crash-Frequency Data," IJERPH, MDPI, vol. 16(2), pages 1-12, January.
- Fabrice Gilles & Sabina Issehnane & Florent Sari, 2022. "Using short-term jobs as a way to find a regular job. What kind of role for local context?," TEPP Working Paper 2022-07, TEPP.
- Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
- Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
- Paulo M. D. C. Parente & Richard J. Smith, 2021.
"Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models,"
Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
- Paulo M.D.C. Parente & Richard J. Smith, 2018. "Quasi-Maximum Likelihood and the Kernel Block Bootstrap for Nonlinear Dynamic Models," Working Papers REM 2018/59, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Paulo Parente & Richard J. Smith, 2019. "Quasi-maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," CeMMAP working papers CWP60/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Cornelia Lawson, 2013.
"Academic Inventions Outside the University: Investigating Patent Ownership in the UK,"
Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
- Meissner Cornelia, 2011. "Academic Patenting: Opportunity, Support or Attitude?," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201107, University of Turin.
- Lawson, Cornelia, 2012. "Academic inventions outside the university: A result of industry sponsorship or entrepreneurial activities?," Department of Economics and Statistics Cognetti de Martiis LEI & BRICK - Laboratory of Economics of Innovation "Franco Momigliano", Bureau of Research in Innovation, Complexity and Knowledge, Collegio 201216, University of Turin.
- Vipin Arora & Shuping Shi, 2016. "Nonlinearities and tests of asset price bubbles," Empirical Economics, Springer, vol. 50(4), pages 1421-1433, June.
- Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
- Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
- Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995.
"Econometric Evaluation of Asset Pricing Models,"
The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
- Lars Peter Hansen & John Heaton & Erzo G.J. Luttmer, 1993. "Econometric Evaluation of Asset Pricing Models," NBER Technical Working Papers 0145, National Bureau of Economic Research, Inc.
- Das, Marcel & van Soest, Arthur, 1999.
"A panel data model for subjective information on household income growth,"
Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
- Das, J.W.M. & van Soest, A.H.O., 1996. "A Panel Data Model for Subjective Information on Household Income Growth," Discussion Paper 1996-75, Tilburg University, Center for Economic Research.
- Das, J.W.M. & van Soest, A.H.O., 1996. "A Panel Data Model for Subjective Information on Household Income Growth," Other publications TiSEM 9111e0db-3678-40a7-ab7f-1, Tilburg University, School of Economics and Management.
- Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
- Luis Garicano & Thomas N. Hubbard, 2016.
"The Returns to Knowledge Hierarchies,"
The Journal of Law, Economics, and Organization, Oxford University Press, vol. 32(4), pages 653-684.
- Thomas Hubbard & Luis Garicano, 2007. "The Return to Knowledge Hierarchies," Working Papers 07-01, Center for Economic Studies, U.S. Census Bureau.
- Luis Garicano & Thomas N. Hubbard, 2007. "The Return to Knowledge Hierarchies," NBER Working Papers 12815, National Bureau of Economic Research, Inc.
- Hubbard, Thomas N. & Garicano, Luis, 2007. "The Return to Knowledge Hierarchies," CEPR Discussion Papers 6077, C.E.P.R. Discussion Papers.
- Garicano, Luis & Hubbard, Thomas N., 2016. "The returns to knowledge hierarchies," LSE Research Online Documents on Economics 68590, London School of Economics and Political Science, LSE Library.
- Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
- Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019.
"The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences,"
Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
- Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2016. "The Many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Working Papers 1603, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz, revised 01 Feb 2016.
- Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2018. "The Many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," CESifo Working Paper Series 7240, CESifo.
- Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2018. "The Many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Working Papers 2018-079, Human Capital and Economic Opportunity Working Group.
- Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2016. "The Many Faces of Human Sociality:Uncovering the Distribution and Stability of Social Preferences," Cahiers de Recherches Economiques du Département d'économie 16.01, Université de Lausanne, Faculté des HEC, Département d’économie.
- Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2016. "The Many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," CESifo Working Paper Series 5744, CESifo.
- Bruhin, Adrian & Fehr, Ernst & Schunk, Daniel, 2018. "The Many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," IZA Discussion Papers 11815, Institute of Labor Economics (IZA).
- Bel, K. & Paap, R., 2013. "Modeling the impact of forecast-based regime switches on macroeconomic time series," Econometric Institute Research Papers EI 2013-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
More about this item
Keywords
daily crash frequency; short-term driving environment; panel data; hurdle negative binomial; random effect;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:11:p:1043-:d:81480. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.