IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v13y2016i6p609-d72283.html
   My bibliography  Save this article

Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models

Author

Listed:
  • Feng Chen

    (Key Laboratory of Road & Traffic Engineering of the Ministry of Education, Tongji University, 4800 Cao’an Road, Shanghai 201804, China)

  • Suren Chen

    (Department of Civil & Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA)

  • Xiaoxiang Ma

    (Department of Civil & Environmental Engineering, Colorado State University, Fort Collins, CO 80523, USA)

Abstract

Traffic and environmental conditions (e.g., weather conditions), which frequently change with time, have a significant impact on crash occurrence. Traditional crash frequency models with large temporal scales and aggregated variables are not sufficient to capture the time-varying nature of driving environmental factors, causing significant loss of critical information on crash frequency modeling. This paper aims at developing crash frequency models with refined temporal scales for complex driving environments, with such an effort providing more detailed and accurate crash risk information which can allow for more effective and proactive traffic management and law enforcement intervention. Zero-inflated, negative binomial (ZINB) models with site-specific random effects are developed with unbalanced panel data to analyze hourly crash frequency on highway segments. The real-time driving environment information, including traffic, weather and road surface condition data, sourced primarily from the Road Weather Information System, is incorporated into the models along with site-specific road characteristics. The estimation results of unbalanced panel data ZINB models suggest there are a number of factors influencing crash frequency, including time-varying factors (e.g., visibility and hourly traffic volume) and site-varying factors (e.g., speed limit). The study confirms the unique significance of the real-time weather, road surface condition and traffic data to crash frequency modeling.

Suggested Citation

  • Feng Chen & Suren Chen & Xiaoxiang Ma, 2016. "Crash Frequency Modeling Using Real-Time Environmental and Traffic Data and Unbalanced Panel Data Models," IJERPH, MDPI, vol. 13(6), pages 1-16, June.
  • Handle: RePEc:gam:jijerp:v:13:y:2016:i:6:p:609-:d:72283
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/13/6/609/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/13/6/609/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Golob, Thomas F. & Recker, Wilfred W., 2004. "A method for relating type of crash to traffic flow characteristics on urban freeways," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(1), pages 53-80, January.
    2. Vuong, Quang H, 1989. "Likelihood Ratio Tests for Model Selection and Non-nested Hypotheses," Econometrica, Econometric Society, vol. 57(2), pages 307-333, March.
    3. Lord, Dominique & Mannering, Fred, 2010. "The statistical analysis of crash-frequency data: A review and assessment of methodological alternatives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(5), pages 291-305, June.
    4. Helai Huang & Hong Chin, 2010. "Modeling road traffic crashes with zero-inflation and site-specific random effects," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 19(3), pages 445-462, August.
    5. Dong, Chunjiao & Nambisan, Shashi S. & Richards, Stephen H. & Ma, Zhuanglin, 2015. "Assessment of the effects of highway geometric design features on the frequency of truck involved crashes using bivariate regression," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 30-41.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen Xu & Decun Dong & Dongxiu Ou & Changxi Ma, 2019. "Time-of-Day Control Double-Order Optimization of Traffic Safety and Data-Driven Intersections," IJERPH, MDPI, vol. 16(5), pages 1-18, March.
    2. Sheng Dong & Afaq Khattak & Irfan Ullah & Jibiao Zhou & Arshad Hussain, 2022. "Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations," IJERPH, MDPI, vol. 19(5), pages 1-23, March.
    3. Chen Wang & Lin Liu & Chengcheng Xu & Weitao Lv, 2019. "Predicting Future Driving Risk of Crash-Involved Drivers Based on a Systematic Machine Learning Framework," IJERPH, MDPI, vol. 16(3), pages 1-18, January.
    4. Yulong Bao & Yongle Li & Jiajie Ding, 2016. "A Case Study of Dynamic Response Analysis and Safety Assessment for a Suspended Monorail System," IJERPH, MDPI, vol. 13(11), pages 1-17, November.
    5. Huiying Wen & Xuan Zhang & Qiang Zeng & Jaeyoung Lee & Quan Yuan, 2019. "Investigating Spatial Autocorrelation and Spillover Effects in Freeway Crash-Frequency Data," IJERPH, MDPI, vol. 16(2), pages 1-12, January.
    6. Qiang Zeng & Wei Hao & Jaeyoung Lee & Feng Chen, 2020. "Investigating the Impacts of Real-Time Weather Conditions on Freeway Crash Severity: A Bayesian Spatial Analysis," IJERPH, MDPI, vol. 17(8), pages 1-15, April.
    7. Xiaojun Shao & Xiaoxiang Ma & Feng Chen & Mingtao Song & Xiaodong Pan & Kesi You, 2020. "A Random Parameters Ordered Probit Analysis of Injury Severity in Truck Involved Rear-End Collisions," IJERPH, MDPI, vol. 17(2), pages 1-18, January.
    8. Feng Chen & Xiaoxiang Ma & Suren Chen & Lin Yang, 2016. "Crash Frequency Analysis Using Hurdle Models with Random Effects Considering Short-Term Panel Data," IJERPH, MDPI, vol. 13(11), pages 1-11, October.
    9. Ming Lv & Xiaojun Shao & Chimou Li & Feng Chen, 2022. "Driving Performance Evaluation of Shuttle Buses: A Case Study of Hong Kong–Zhuhai–Macau Bridge," IJERPH, MDPI, vol. 19(3), pages 1-13, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng Chen & Xiaoxiang Ma & Suren Chen & Lin Yang, 2016. "Crash Frequency Analysis Using Hurdle Models with Random Effects Considering Short-Term Panel Data," IJERPH, MDPI, vol. 13(11), pages 1-11, October.
    2. Bo Yang & Yao Wu & Weihua Zhang & Jie Bao, 2020. "Modeling Collision Probability on Freeway: Accounting for Different Types and Severities in Various LOS," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    3. Spasoje Mićić & Radoje Vujadinović & Goran Amidžić & Milanko Damjanović & Boško Matović, 2022. "Accident Frequency Prediction Model for Flat Rural Roads in Serbia," Sustainability, MDPI, vol. 14(13), pages 1-14, June.
    4. Lars Böcker & Patrick Amen & Marco Helbich, 2017. "Elderly travel frequencies and transport mode choices in Greater Rotterdam, the Netherlands," Transportation, Springer, vol. 44(4), pages 831-852, July.
    5. María Flor & Armando Ortuño & Begoña Guirao, 2022. "Does the Implementation of Ride-Hailing Services Affect Urban Road Safety? The Experience of Madrid," IJERPH, MDPI, vol. 19(5), pages 1-18, March.
    6. Fabrice Gilles & Sabina Issehnane & Florent Sari, 2022. "Using short-term jobs as a way to find a regular job. What kind of role for local context?," TEPP Working Paper 2022-07, TEPP.
    7. Najaf, Pooya & Thill, Jean-Claude & Zhang, Wenjia & Fields, Milton Greg, 2018. "City-level urban form and traffic safety: A structural equation modeling analysis of direct and indirect effects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 257-270.
    8. Buddhavarapu, Prasad & Bansal, Prateek & Prozzi, Jorge A., 2021. "A new spatial count data model with time-varying parameters," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 566-586.
    9. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    10. Cornelia Lawson, 2013. "Academic Inventions Outside the University: Investigating Patent Ownership in the UK," Industry and Innovation, Taylor & Francis Journals, vol. 20(5), pages 385-398, July.
    11. Vipin Arora & Shuping Shi, 2016. "Nonlinearities and tests of asset price bubbles," Empirical Economics, Springer, vol. 50(4), pages 1421-1433, June.
    12. Luiz Paulo Fávero & Joseph F. Hair & Rafael de Freitas Souza & Matheus Albergaria & Talles V. Brugni, 2021. "Zero-Inflated Generalized Linear Mixed Models: A Better Way to Understand Data Relationships," Mathematics, MDPI, vol. 9(10), pages 1-28, May.
    13. Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
    14. Hansen, Lars Peter & Heaton, John & Luttmer, Erzo G J, 1995. "Econometric Evaluation of Asset Pricing Models," The Review of Financial Studies, Society for Financial Studies, vol. 8(2), pages 237-274.
    15. Das, Marcel & van Soest, Arthur, 1999. "A panel data model for subjective information on household income growth," Journal of Economic Behavior & Organization, Elsevier, vol. 40(4), pages 409-426, December.
    16. Gillespie, Colin S., 2015. "Fitting Heavy Tailed Distributions: The poweRlaw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 64(i02).
    17. Luis Garicano & Thomas N. Hubbard, 2016. "The Returns to Knowledge Hierarchies," The Journal of Law, Economics, and Organization, Oxford University Press, vol. 32(4), pages 653-684.
    18. Yen, Steven T. & Chern, Wen S. & Lee, Hwang-Jaw, 1991. "Effects Of Income Sources On Household Food Expenditures," 1991 Annual Meeting, August 4-7, Manhattan, Kansas 271167, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    19. Adrian Bruhin & Ernst Fehr & Daniel Schunk, 2019. "The many Faces of Human Sociality: Uncovering the Distribution and Stability of Social Preferences," Journal of the European Economic Association, European Economic Association, vol. 17(4), pages 1025-1069.
    20. Bel, K. & Paap, R., 2013. "Modeling the impact of forecast-based regime switches on macroeconomic time series," Econometric Institute Research Papers EI 2013-25, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:6:p:609-:d:72283. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.