IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i23p4846-d293220.html
   My bibliography  Save this article

Bio-Capture of Solid Pollutants by Vegetation Canopy Cave in Shallow Water Flow

Author

Listed:
  • Yanhong Li

    (State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China)

  • Liquan Xie

    (College of Civil Engineering, Tongji University, Shanghai 200092, China)

  • Tsung-chow Su

    (Department of Ocean and Mechanical Engineering, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA)

Abstract

Vegetation has already been acknowledged to have the ability to remove fine solid pollutants by retention and absorption, and is widely used in the biorestoration engineering of natural shallow water flow. Vegetation usually takes a long time to obtain the expected removal rate. Therefore, vegetation is not applicable for some urgent or pressing situations. In addition, in traditional biorestoration engineering, solid pollutants usually deposit in the soil of flow bed, which infiltrates into the far-field and accumulates in crops to threaten human health. Herein, we propose a new biotechnique of foliage capture by designing a cave on the top of a vegetation canopy, which is aimed to enhance the removal efficiency (i.e., achieve quick removal) and avoid the soil deposition of pollutants. The effectiveness and efficiency of this new design were validated by a set of indoor water flume experiments, with one flat canopy top configuration serving as the model of a traditional bioretention system and three cave configurations of differing aspect ratios. The results showed that compared with that of the flat canopy top, the total amount of foliage-captured solid particles for the three caved canopies increased by 3.8, 7.3, and 12.2 times. Further, we found that the foliage-capture efficiency depended on the aspect ratio of the canopy cave. The results revealed that the effectiveness of foliage capture and the enhanced efficiency were mainly from three hydrodynamic mechanisms: (i) as flow penetrated the cave boundary from the above-canopy region to the within-canopy region, it entrained solid pollutants to collide with the foliage and increased their fate of capture; (ii) the large eddy vortices of turbulence broke due to the increasing canopy resistance, which resulted in enhanced mixing dynamics for fine, suspended, solid pollutants to collide into foliage; and (iii) the flow shear along the cave boundary decreased, which provided a reduced lift force for solid pollutants to suspend or resuspend. Comparisons between the flat canopy and caved canopies of three aspect ratios showed that the design of the canopy cave is highly significant for capture efficiency.

Suggested Citation

  • Yanhong Li & Liquan Xie & Tsung-chow Su, 2019. "Bio-Capture of Solid Pollutants by Vegetation Canopy Cave in Shallow Water Flow," IJERPH, MDPI, vol. 16(23), pages 1-16, December.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:23:p:4846-:d:293220
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/23/4846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/23/4846/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Yu & Peifang Wang & Chao Wang & Xun Wang & Bin Hu, 2018. "Assessment of the Multi-Objective Reservoir Operation for Maintaining the Turbidity Maximum Zone in the Yangtze River Estuary," IJERPH, MDPI, vol. 15(10), pages 1-19, September.
    2. Zhonghe Zhao & Gaohuan Liu & Qingsheng Liu & Chong Huang & He Li, 2018. "Studies on the Spatiotemporal Variability of River Water Quality and Its Relationships with Soil and Precipitation: A Case Study of the Mun River Basin in Thailand," IJERPH, MDPI, vol. 15(11), pages 1-19, November.
    3. Xiuling Li & Henglun Shen & Yongjun Zhao & Weixing Cao & Changwei Hu & Chen Sun, 2019. "Distribution and Potential Ecological Risk of Heavy Metals in Water, Sediments, and Aquatic Macrophytes: A Case Study of the Junction of Four Rivers in Linyi City, China," IJERPH, MDPI, vol. 16(16), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoqiang Li & Guilin Han & Man Liu & Kunhua Yang & Jinke Liu, 2019. "Hydro-Geochemistry of the River Water in the Jiulongjiang River Basin, Southeast China: Implications of Anthropogenic Inputs and Chemical Weathering," IJERPH, MDPI, vol. 16(3), pages 1-16, February.
    2. Xiaoqiang Li & Guilin Han & Man Liu & Chao Song & Qian Zhang & Kunhua Yang & Jinke Liu, 2019. "Hydrochemistry and Dissolved Inorganic Carbon (DIC) Cycling in a Tropical Agricultural River, Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    3. Haoyu Tian & Guo-An Yu & Ling Tong & Renzhi Li & He Qing Huang & Arika Bridhikitti & Thayukorn Prabamroong, 2019. "Water Quality of the Mun River in Thailand—Spatiotemporal Variations and Potential Causes," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
    4. Songtao Liu & Furong Yu & Jianuo Zhang, 2022. "Heavy-Metal Speciation Distribution and Adsorption Characteristics of Cr (VI) in the Soil within Sewage Irrigation Areas," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    5. Jinke Liu & Guilin Han & Xiaolong Liu & Man Liu & Chao Song & Qian Zhang & Kunhua Yang & Xiaoqiang Li, 2019. "Impacts of Anthropogenic Changes on the Mun River Water: Insight from Spatio-Distributions and Relationship of C and N Species in Northeast Thailand," IJERPH, MDPI, vol. 16(4), pages 1-14, February.
    6. Eun-A Hwang & In-Hwan Cho & Ha-Kyung Kim & Chen Yi & Baik-Ho Kim, 2023. "The Relationship between Rainfall Pattern and Epilithic Diatoms in Four Streams of Central-Western Korea for Three Years (2013–2015)," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    7. Ronghua Zhong & Yun Zhang & Xingwu Duan & Fei Wang & Raheel Anjum, 2022. "Heavy Metals Enrichment Associated with Water-Level Fluctuations in the Riparian Soils of the Xiaowan Reservoir, Lancang River," IJERPH, MDPI, vol. 19(19), pages 1-16, October.
    8. Zhi Xu & Jing Ma & Yajie Hu, 2019. "Saltwater Intrusion Function and Preliminary Application in the Yangtze River Estuary, China," IJERPH, MDPI, vol. 16(1), pages 1-19, January.
    9. Zhonghe Zhao & Kun Liu & Bowei Yu & Gaohuan Liu & Youxiao Wang & Chunsheng Wu, 2023. "Modeling of Agricultural Nonpoint-Source Pollution Quantitative Assessment: A Case Study in the Mun River Basin, Thailand," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    10. Haeseong Oh & Jung-Hyun Choi, 2022. "Changes in the Dissolved Organic Matter Characteristics Released from Sediment According to Precipitation in the Namhan River with Weirs: A Laboratory Experiment," IJERPH, MDPI, vol. 19(9), pages 1-17, April.
    11. Guoqi Lian & Xinqing Lee, 2021. "Concentrations, Distribution, and Pollution Assessment of Metals in River Sediments in China," IJERPH, MDPI, vol. 18(13), pages 1-20, June.
    12. Rui Qu & Guilin Han & Man Liu & Xiaoqiang Li, 2019. "The Mercury Behavior and Contamination in Soil Profiles in Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 16(21), pages 1-16, October.
    13. Fuguo Qiu & Huadong Lv & Xiao Zhao & Dongye Zhao, 2019. "Impact of an Extreme Winter Storm Event on the Coagulation/Flocculation Processes in a Prototype Surface Water Treatment Plant: Causes and Mitigating Measures," IJERPH, MDPI, vol. 16(15), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:23:p:4846-:d:293220. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.