IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i1p118-d194949.html
   My bibliography  Save this article

Saltwater Intrusion Function and Preliminary Application in the Yangtze River Estuary, China

Author

Listed:
  • Zhi Xu

    (Department of Hyraulic Engineering, Tsinghua University, Beijing 100084, China
    China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Jing Ma

    (China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Yajie Hu

    (China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

Abstract

More attention has been paid to saltwater-intrusion-related problems in recent years. In this research study, a saltwater intrusion function in the Yangtze River Estuary (YRE) was constructed based on the theory of the interactions between energy accumulation and impedance. A MIKE21 model was used to simulate the hydrodynamics of the YRE. Then, through the analysis of the relationships between the river discharge conditions, tidal ranges, and saltwater intrusion, it was determined that, under certain river discharge conditions, the tidal ranges and salinity levels at the stations in the southern branch (SB) of the YRE conformed to S-shaped curve characteristics. Also, the tidal ranges and salinity excessive area rate (SEAR) displayed similar characteristics. Furthermore, the river discharge conditions were also found to match the S-curve characteristics between the two aforementioned relationship features. Therefore, the saltwater intrusion function of the YRE was constructed based on the previously mentioned development rules. Also, the applied quantification methods were elaborated, and the values of the parameters were determined. As a result, the critical river discharge (more than 10,000 m 3 /s) was obtained, which could withstand large-scale saltwater intrusions. When the river discharge was greater than 30,000 m 3 /s, the area was considered to be basically without salt water intrusions, and the estuarine ecology was in an optimal state. The saltwater intrusion losses from 2005 to 2015 are also calculated. These findings have important reference value for water dispatching of the YRE in the dry season.

Suggested Citation

  • Zhi Xu & Jing Ma & Yajie Hu, 2019. "Saltwater Intrusion Function and Preliminary Application in the Yangtze River Estuary, China," IJERPH, MDPI, vol. 16(1), pages 1-19, January.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:1:p:118-:d:194949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/1/118/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/1/118/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang Yu & Peifang Wang & Chao Wang & Xun Wang & Bin Hu, 2018. "Assessment of the Multi-Objective Reservoir Operation for Maintaining the Turbidity Maximum Zone in the Yangtze River Estuary," IJERPH, MDPI, vol. 15(10), pages 1-19, September.
    2. Minjian Chen & Jing Ma & Yajie Hu & Fei Zhou & Jinxiu Li & Long Yan, 2015. "Is the S-shaped curve a general law? An application to evaluate the damage resulting from water-induced disasters," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(1), pages 497-515, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziyuan Wang & Yiqing Guan & Danrong Zhang & Alain Niyongabo & Haowen Ming & Zhiming Yu & Yihui Huang, 2023. "Research on Seawater Intrusion Suppression Scheme of Minjiang River Estuary," IJERPH, MDPI, vol. 20(6), pages 1-15, March.
    2. Zhi Xu & Jing Ma & Hao Wang & Jianshi Zhao, 2020. "Influence of River Discharge on the Transport of the Saltwater Group from the North Branch in the Yangtze River Estuary," IJERPH, MDPI, vol. 17(24), pages 1-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaochao Li & Xiaotao Cheng & Na Li & Xiaohe Du & Qian Yu & Guangyuan Kan, 2016. "A Framework for Flood Risk Analysis and Benefit Assessment of Flood Control Measures in Urban Areas," IJERPH, MDPI, vol. 13(8), pages 1-18, August.
    2. Yanhong Li & Liquan Xie & Tsung-chow Su, 2019. "Bio-Capture of Solid Pollutants by Vegetation Canopy Cave in Shallow Water Flow," IJERPH, MDPI, vol. 16(23), pages 1-16, December.
    3. Dong, Xuefan & Liu, Yijung & Wu, Chao & Lian, Ying, 2019. "The topology of scale-free networks with an S-shaped nonlinear growth characteristic," Chaos, Solitons & Fractals, Elsevier, vol. 121(C), pages 137-148.
    4. Fuguo Qiu & Huadong Lv & Xiao Zhao & Dongye Zhao, 2019. "Impact of an Extreme Winter Storm Event on the Coagulation/Flocculation Processes in a Prototype Surface Water Treatment Plant: Causes and Mitigating Measures," IJERPH, MDPI, vol. 16(15), pages 1-15, August.
    5. Cui, Yi & Jiang, Shangming & Jin, Juliang & Ning, Shaowei & Feng, Ping, 2019. "Quantitative assessment of soybean drought loss sensitivity at different growth stages based on S-shaped damage curve," Agricultural Water Management, Elsevier, vol. 213(C), pages 821-832.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:1:p:118-:d:194949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.