IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i10p6309-d821523.html
   My bibliography  Save this article

Heavy-Metal Speciation Distribution and Adsorption Characteristics of Cr (VI) in the Soil within Sewage Irrigation Areas

Author

Listed:
  • Songtao Liu

    (College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

  • Furong Yu

    (College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China
    Collaborative Innovation Center for Efficient Utilization of Water Resources, Zhengzhou 450046, China
    Key Laboratory of Water and Soil Resources Conservation and Restoration in the Middle and Lower Reaches of Yellow River Basin, Ministry of Natural Resources, Zhengzhou 450046, China)

  • Jianuo Zhang

    (College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, China)

Abstract

While sewage irrigation relieves water shortages in Northern China, its excessive application triggers a series of environmental problems, such as heavy-metal pollution. Soil profile and river sediment profile samples from the sewage irrigation area (SIA) were collected by selecting the farmlands in which sewage irrigation activity has been reported since the 1960s, around Huiji River (HJR) and Huafei River (HFR) in Kaifeng, Henan Province, China, as research areas. In this study, the total amount of heavy metals (Cr, Cd, Pb, Mn, Zn, and Ni) and the heavy-metal speciation analysis using the modified BCR sequential extraction method were used to evaluate the impacts of wastewater on agricultural soils and the potential risk. Furthermore, the least contaminated Cr (VI) was selected for the study of adsorption characteristics to determine the environmental capacity of soils for heavy metals when the composition of wastewater changes under long-term effluent irrigation conditions. The results show that: (1) the concentrations of heavy metals in soil continuously decreased with depth, while the opposite was observed in sediment, reflecting the continuous improvement in water quality over the historical period; (2) In the topsoil, the mean concentrations (mg·kg −1 ) in rank order are as follows: Mn (588.68) > Zn (284.21) > Pb (99.76) > Cr (76.84) > Ni (34.71) > Cd (3.25), where Cd exceeded the control value by 3.15 times around HFR, and sediment samples also showed higher heavy metal concentrations in HFR than in HJR; (3) Speciation distribution and risk assessment code (RAC) indicate that Mn and Cd were at medium risk and that Cd warrants attention due to its being a non-essential toxic element in humans; (4) The adsorption rates of soil in various layers in different profiles within SIAs for Cr (VI) gradually increased with the increasing initial content of Cr (VI). Among the three isothermal adsorption models, the fit result obtained by the Langmuir equation was superior to those obtained by the Freundlich equation and the linear equation.

Suggested Citation

  • Songtao Liu & Furong Yu & Jianuo Zhang, 2022. "Heavy-Metal Speciation Distribution and Adsorption Characteristics of Cr (VI) in the Soil within Sewage Irrigation Areas," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:6309-:d:821523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/10/6309/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/10/6309/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pedrero, Francisco & Kalavrouziotis, Ioannis & Alarcón, Juan José & Koukoulakis, Prodromos & Asano, Takashi, 2010. "Use of treated municipal wastewater in irrigated agriculture--Review of some practices in Spain and Greece," Agricultural Water Management, Elsevier, vol. 97(9), pages 1233-1241, September.
    2. Xiuling Li & Henglun Shen & Yongjun Zhao & Weixing Cao & Changwei Hu & Chen Sun, 2019. "Distribution and Potential Ecological Risk of Heavy Metals in Water, Sediments, and Aquatic Macrophytes: A Case Study of the Junction of Four Rivers in Linyi City, China," IJERPH, MDPI, vol. 16(16), pages 1-13, August.
    3. Sharma, B. R. & Chaudhary, T. N., 1983. "Wheat root growth, grain yield and water uptake as influenced by soil water regime and depth of nitrogen placement in a loamy sand soil," Agricultural Water Management, Elsevier, vol. 6(4), pages 365-373, August.
    4. Liping He & Wei Hu & Xiaofeng Wang & Yu Liu & Yan Jiang & Yanbin Meng & Qipeng Xiao & Xinxin Guo & Yanfeng Zhou & Yongyi Bi & Yuanan Lu, 2020. "Analysis of Heavy Metal Contamination of Agricultural Soils and Related Effect on Population Health—A Case Study for East River Basin in China," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    5. Li Bai & Xiao-Long Liu & Jian Hu & Jun Li & Zhong-Liang Wang & Guilin Han & Si-Liang Li & Cong-Qiang Liu, 2018. "Heavy Metal Accumulation in Common Aquatic Plants in Rivers and Lakes in the Taihu Basin," IJERPH, MDPI, vol. 15(12), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azunre, Gideon Abagna & Amponsah, Owusu & Takyi, Stephen Appiah & Mensah, Henry & Braimah, Imoro, 2022. "Urban informalities in sub-Saharan Africa (SSA): A solution for or barrier against sustainable city development," World Development, Elsevier, vol. 152(C).
    2. Pedrero, Francisco & Grattan, S.R. & Ben-Gal, Alon & Vivaldi, Gaetano Alessandro, 2020. "Opportunities for expanding the use of wastewaters for irrigation of olives," Agricultural Water Management, Elsevier, vol. 241(C).
    3. Ejovi Akpojevwe Abafe & Yonas T. Bahta & Henry Jordaan, 2022. "Exploring Biblioshiny for Historical Assessment of Global Research on Sustainable Use of Water in Agriculture," Sustainability, MDPI, vol. 14(17), pages 1-34, August.
    4. Dimitra Lazaridou & Anastasios Michailidis & Konstantinos Mattas, 2019. "Evaluating the Willingness to Pay for Using Recycled Water for Irrigation," Sustainability, MDPI, vol. 11(19), pages 1-8, September.
    5. Maestre-Valero, J.F. & Gonzalez-Ortega, M.J. & Martinez-Alvarez, V. & Gallego-Elvira, B. & Conesa-Jodar, F.J. & Martin-Gorriz, B., 2019. "Revaluing the nutrition potential of reclaimed water for irrigation in southeastern Spain," Agricultural Water Management, Elsevier, vol. 218(C), pages 174-181.
    6. Feder, Frédéric, 2021. "Irrigation with treated wastewater in humid regions: Effects on Nitisols, sugarcane yield and quality," Agricultural Water Management, Elsevier, vol. 247(C).
    7. Jemal Fito & Stijn W. H. Hulle, 2021. "Wastewater reclamation and reuse potentials in agriculture: towards environmental sustainability," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 2949-2972, March.
    8. Pedrero, Francisco & Allende, Ana & Gil, María I. & Alarcón, Juan J., 2012. "Soil chemical properties, leaf mineral status and crop production in a lemon tree orchard irrigated with two types of wastewater," Agricultural Water Management, Elsevier, vol. 109(C), pages 54-60.
    9. Elżbieta Skorbiłowicz & Mirosław Skorbiłowicz & Urszula Tarasiuk & Magdalena Korzińska, 2021. "Cadmium, Chromium, and Cobalt in the Organs of Glyceria maxima and Bottom Sediments of the Pisa River and Its Tributaries (Poland)," IJERPH, MDPI, vol. 18(19), pages 1-18, September.
    10. Licciardello, F. & Milani, M. & Consoli, S. & Pappalardo, N. & Barbagallo, S. & Cirelli, G., 2018. "Wastewater tertiary treatment options to match reuse standards in agriculture," Agricultural Water Management, Elsevier, vol. 210(C), pages 232-242.
    11. Deh-Haghi, Zoherh & Bagheri, Asghar & Fotourehchi, Zahra & Damalas, Christos A., 2020. "Farmers’ acceptance and willingness to pay for using treated wastewater in crop irrigation: A survey in western Iran," Agricultural Water Management, Elsevier, vol. 239(C).
    12. Garcia, X. & Pargament, D., 2015. "Reusing wastewater to cope with water scarcity: Economic, social and environmental considerations for decision-making," Resources, Conservation & Recycling, Elsevier, vol. 101(C), pages 154-166.
    13. Laura Mirra & Simone Russo & Massimiliano Borrello, 2024. "Exploring Factors Shaping Farmer Behavior in Wastewater Utilization for Agricultural Practices: A Rapid Review," Sustainability, MDPI, vol. 16(7), pages 1-19, March.
    14. Cirelli, G.L. & Consoli, S. & Licciardello, F. & Aiello, R. & Giuffrida, F. & Leonardi, C., 2012. "Treated municipal wastewater reuse in vegetable production," Agricultural Water Management, Elsevier, vol. 104(C), pages 163-170.
    15. Jeong, Hanseok & Bhattarai, Rabin & Adamowski, Jan & Yu, David J., 2020. "Insights from socio-hydrological modeling to design sustainable wastewater reuse strategies for agriculture at the watershed scale," Agricultural Water Management, Elsevier, vol. 231(C).
    16. Kourgialas, Nektarios N. & Dokou, Zoi, 2021. "Water management and salinity adaptation approaches of Avocado trees: A review for hot-summer Mediterranean climate," Agricultural Water Management, Elsevier, vol. 252(C).
    17. Oliver Maaß & Philipp Grundmann, 2018. "Governing Transactions and Interdependences between Linked Value Chains in a Circular Economy: The Case of Wastewater Reuse in Braunschweig (Germany)," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    18. Ana Allende & James Monaghan, 2015. "Irrigation Water Quality for Leafy Crops: A Perspective of Risks and Potential Solutions," IJERPH, MDPI, vol. 12(7), pages 1-21, July.
    19. Cakmakci, Talip & Sahin, Ustun, 2021. "Improving silage maize productivity using recycled wastewater under different irrigation methods," Agricultural Water Management, Elsevier, vol. 255(C).
    20. Nemera, Diriba Bane & Bar-Tal, Asher & Levy, Guy J. & Lukyanov, Victor & Tarchitzky, Jorge & Paudel, Indira & Cohen, Shabtai, 2020. "Mitigating negative effects of long-term treated wastewater application via soil and irrigation manipulations: Sap flow and water relations of avocado trees (Persea americana Mill.)," Agricultural Water Management, Elsevier, vol. 237(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:6309-:d:821523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.