IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i20p3906-d276588.html
   My bibliography  Save this article

Water Quality of the Mun River in Thailand—Spatiotemporal Variations and Potential Causes

Author

Listed:
  • Haoyu Tian

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Guo-An Yu

    (Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Ling Tong

    (College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)

  • Renzhi Li

    (Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • He Qing Huang

    (Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Arika Bridhikitti

    (Environmental Engineering and Disaster Management Program, School of Interdisciplinary Studies, Mahidol University Kanchanaburi Campus, Kanchanaburi 71150, Thailand)

  • Thayukorn Prabamroong

    (Faculty of Environment and Resource Studies, Mahasarakham University, Kantarawichai District, Maha Sarakham 44150, Thailand)

Abstract

The water quality of the Mun River, one of the largest tributaries of the Mekong River and an important agricultural area in Thailand, is investigated to determine its status, identify spatiotemporal variations and distinguish the potential causes. Water quality dataset based on monitoring in the last two decades (1997–2017) from 21 monitoring sites distributed across the basin were analyzed using seasonal Kendall test and water quality index (WQI) method. The Kendall test shows significant declines in fecal coliform bacteria (FCB) and ammonia (NH 3 ) in the upper reaches and increases in nitrate (NO 3 ) and NH 3 in the lower reaches. Strong temporal and spatial fluctuations were observed in both the concentrations of individual parameters and the WQI values. Seasonal variation of water quality was observed at each monitoring site. WQI values in August (flood season) were generally among the lowest, compared to other seasons. Spatially, sites in the upper reaches generally having lower WQI values than those in the lower reaches. Excessive phosphorus is the primary cause of water quality degradation in the upper reaches, while nitrogen is the primary parameter for water quality degradation in the lower reaches. Urban built-up land is an important “source” of water pollutants in the lower basin, while agricultural land plays a dual role, affecting across the basin.

Suggested Citation

  • Haoyu Tian & Guo-An Yu & Ling Tong & Renzhi Li & He Qing Huang & Arika Bridhikitti & Thayukorn Prabamroong, 2019. "Water Quality of the Mun River in Thailand—Spatiotemporal Variations and Potential Causes," IJERPH, MDPI, vol. 16(20), pages 1-19, October.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:3906-:d:276588
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/20/3906/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/20/3906/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhonghe Zhao & Gaohuan Liu & Qingsheng Liu & Chong Huang & He Li, 2018. "Studies on the Spatiotemporal Variability of River Water Quality and Its Relationships with Soil and Precipitation: A Case Study of the Mun River Basin in Thailand," IJERPH, MDPI, vol. 15(11), pages 1-19, November.
    2. Bin Liang & Guilin Han & Man Liu & Kunhua Yang & Xiaoqiang Li & Jinke Liu, 2018. "Distribution, Sources, and Water Quality Assessment of Dissolved Heavy Metals in the Jiulongjiang River Water, Southeast China," IJERPH, MDPI, vol. 15(12), pages 1-14, December.
    3. Xizhi Nong & Dongguo Shao & Yi Xiao & Hua Zhong, 2019. "Spatio-Temporal Characterization Analysis and Water Quality Assessment of the South-to-North Water Diversion Project of China," IJERPH, MDPI, vol. 16(12), pages 1-23, June.
    4. Nuanchan Singkran, 2017. "Determining overall water quality related to anthropogenic influences across freshwater systems of Thailand," International Journal of Water Resources Development, Taylor & Francis Journals, vol. 33(1), pages 132-151, January.
    5. Zhonghe Zhao & Gaohuan Liu & Qingsheng Liu & Chong Huang & He Li & Chunsheng Wu, 2018. "Distribution Characteristics and Seasonal Variation of Soil Nutrients in the Mun River Basin, Thailand," IJERPH, MDPI, vol. 15(9), pages 1-18, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fituma Lemessa & Belay Simane & Assefa Seyoum & Girma Gebresenbet, 2023. "Assessment of the Impact of Industrial Wastewater on the Water Quality of Rivers around the Bole Lemi Industrial Park (BLIP), Ethiopia," Sustainability, MDPI, vol. 15(5), pages 1-18, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinfeng Zeng & Zuwen Liu & Xinggen Liu & Linan Zhang & Jun Zhang & Yangsong Zeng, 2023. "The Spatiotemporal Variations and Potential Causes of Water Quality of Headwaters of Dongjiang River, Southeastern China," Sustainability, MDPI, vol. 15(8), pages 1-14, April.
    2. Xiaoqiang Li & Guilin Han & Man Liu & Kunhua Yang & Jinke Liu, 2019. "Hydro-Geochemistry of the River Water in the Jiulongjiang River Basin, Southeast China: Implications of Anthropogenic Inputs and Chemical Weathering," IJERPH, MDPI, vol. 16(3), pages 1-16, February.
    3. Zhonghe Zhao & Kun Liu & Bowei Yu & Gaohuan Liu & Youxiao Wang & Chunsheng Wu, 2023. "Modeling of Agricultural Nonpoint-Source Pollution Quantitative Assessment: A Case Study in the Mun River Basin, Thailand," Sustainability, MDPI, vol. 15(13), pages 1-16, June.
    4. Rui Qu & Guilin Han & Man Liu & Xiaoqiang Li, 2019. "The Mercury Behavior and Contamination in Soil Profiles in Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 16(21), pages 1-16, October.
    5. Arika Bridhikitti & Thayukorn Prabamroong & Guohuan Liu & Guo-An Yu, 2021. "Best management practices for mitigating agricultural nutrient pollution in the Mun River Basin, Thailand," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 16(2), pages 121-128.
    6. Yujie Chen & Yuan Yuan & Yuquan Zhou, 2022. "Exploring the Association between Neighborhood Blue Space and Self-Rated Health among Elderly Adults: Evidence from Guangzhou, China," IJERPH, MDPI, vol. 19(23), pages 1-17, December.
    7. Xiaoqiang Li & Guilin Han & Man Liu & Chao Song & Qian Zhang & Kunhua Yang & Jinke Liu, 2019. "Hydrochemistry and Dissolved Inorganic Carbon (DIC) Cycling in a Tropical Agricultural River, Mun River Basin, Northeast Thailand," IJERPH, MDPI, vol. 16(18), pages 1-13, September.
    8. Wen Liu & Long Ma & Yaoming Li & Jilili Abuduwaili & Salamat Abdyzhapar uulu, 2020. "Heavy Metals and Related Human Health Risk Assessment for River Waters in the Issyk−Kul Basin, Kyrgyzstan, Central Asia," IJERPH, MDPI, vol. 17(10), pages 1-13, May.
    9. Jinke Liu & Guilin Han & Xiaolong Liu & Man Liu & Chao Song & Qian Zhang & Kunhua Yang & Xiaoqiang Li, 2019. "Impacts of Anthropogenic Changes on the Mun River Water: Insight from Spatio-Distributions and Relationship of C and N Species in Northeast Thailand," IJERPH, MDPI, vol. 16(4), pages 1-14, February.
    10. Ye Pan & Yuan Yuan & Ting Sun & Yuxin Wang & Yujing Xie & Zhengqiu Fan, 2020. "Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route," IJERPH, MDPI, vol. 17(17), pages 1-21, September.
    11. Reza Aghlmand & Saeed Rasi Nezami & Ali Abbasi, 2021. "Evaluation of Chemical Parameters of Urban Drinking Water Quality along with Health Risk Assessment: A Case Study of Ardabil Province, Iran," IJERPH, MDPI, vol. 18(10), pages 1-11, May.
    12. Eun-A Hwang & In-Hwan Cho & Ha-Kyung Kim & Chen Yi & Baik-Ho Kim, 2023. "The Relationship between Rainfall Pattern and Epilithic Diatoms in Four Streams of Central-Western Korea for Three Years (2013–2015)," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    13. Sonia Torres-Rivera & José Ramón Torres-Hernández & Simón Eduardo Carranco-Lozada & María Elena García-Arreola & Rubén Alfonso López-Doncel & Jesús Anibal Montenegro-Ríos, 2023. "Anthropogenic Contamination in the Free Aquifer of the San Luis Potosí Valley," IJERPH, MDPI, vol. 20(12), pages 1-23, June.
    14. Xizhi Nong & Dongguo Shao & Yi Xiao & Hua Zhong, 2019. "Spatio-Temporal Characterization Analysis and Water Quality Assessment of the South-to-North Water Diversion Project of China," IJERPH, MDPI, vol. 16(12), pages 1-23, June.
    15. Yanhong Li & Liquan Xie & Tsung-chow Su, 2019. "Bio-Capture of Solid Pollutants by Vegetation Canopy Cave in Shallow Water Flow," IJERPH, MDPI, vol. 16(23), pages 1-16, December.
    16. Yu Zhou & Xinmin Wang & Weiying Li & Shuyun Zhou & Laizhu Jiang, 2023. "Water Quality Evaluation and Pollution Source Apportionment of Surface Water in a Major City in Southeast China Using Multi-Statistical Analyses and Machine Learning Models," IJERPH, MDPI, vol. 20(1), pages 1-16, January.
    17. Bin Liang & Guilin Han & Jie Zeng & Rui Qu & Man Liu & Jinke Liu, 2020. "Spatial Variation and Source of Dissolved Heavy Metals in the Lancangjiang River, Southwest China," IJERPH, MDPI, vol. 17(3), pages 1-15, January.
    18. Jie Zeng & Guilin Han & Shitong Zhang & Qian Zhang, 2022. "Suspended Sediments Quality Assessment in a Coastal River: Identification of Potentially Toxic Elements," IJERPH, MDPI, vol. 19(7), pages 1-14, April.
    19. Zezhou Wu & Mingyang Jiang & Yuzhu Cai & Hao Wang & Shenghan Li, 2019. "What Hinders the Development of Green Building? An Investigation of China," IJERPH, MDPI, vol. 16(17), pages 1-18, August.
    20. Haeseong Oh & Jung-Hyun Choi, 2022. "Changes in the Dissolved Organic Matter Characteristics Released from Sediment According to Precipitation in the Namhan River with Weirs: A Laboratory Experiment," IJERPH, MDPI, vol. 19(9), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:20:p:3906-:d:276588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.