IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i12p2207-d242068.html
   My bibliography  Save this article

A Population Dynamic Model to Assess the Diabetes Screening and Reporting Programs and Project the Burden of Undiagnosed Diabetes in Thailand

Author

Listed:
  • Wiriya Mahikul

    (Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand)

  • Lisa J White

    (Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
    Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK)

  • Kittiyod Poovorawan

    (Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand)

  • Ngamphol Soonthornworasiri

    (Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand)

  • Pataporn Sukontamarn

    (College of Population Studies, Chulalongkorn University, Bangkok 10330, Thailand)

  • Phetsavanh Chanthavilay

    (Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
    Institute of Research and Education Development, UHS, Vientiane 7444, Laos)

  • Wirichada Pan-ngum

    (Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
    Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand)

  • Graham F Medley

    (Centre for Mathematical Modelling of Infectious Disease & Department of Global Health and Development, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK)

Abstract

Diabetes mellitus (DM) is rising worldwide, exacerbated by aging populations. We estimated and predicted the diabetes burden and mortality due to undiagnosed diabetes together with screening program efficacy and reporting completeness in Thailand, in the context of demographic changes. An age and sex structured dynamic model including demographic and diagnostic processes was constructed. The model was validated using a Bayesian Markov Chain Monte Carlo (MCMC) approach. The prevalence of DM was predicted to increase from 6.5% (95% credible interval: 6.3–6.7%) in 2015 to 10.69% (10.4–11.0%) in 2035, with the largest increase (72%) among 60 years or older. Out of the total DM cases in 2015, the percentage of undiagnosed DM cases was 18.2% (17.4–18.9%), with males higher than females ( p -value < 0.01). The highest group with undiagnosed DM was those aged less than 39 years old, 74.2% (73.7–74.7%). The mortality of undiagnosed DM was ten-fold greater than the mortality of those with diagnosed DM. The estimated coverage of diabetes positive screening programs was ten-fold greater for elderly compared to young. The positive screening rate among females was estimated to be significantly higher than those in males. Of the diagnoses, 87.4% (87.0–87.8%) were reported. Targeting screening programs and good reporting systems will be essential to reduce the burden of disease.

Suggested Citation

  • Wiriya Mahikul & Lisa J White & Kittiyod Poovorawan & Ngamphol Soonthornworasiri & Pataporn Sukontamarn & Phetsavanh Chanthavilay & Wirichada Pan-ngum & Graham F Medley, 2019. "A Population Dynamic Model to Assess the Diabetes Screening and Reporting Programs and Project the Burden of Undiagnosed Diabetes in Thailand," IJERPH, MDPI, vol. 16(12), pages 1-10, June.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:12:p:2207-:d:242068
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/12/2207/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/12/2207/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junjie Huang & Chun-Ho Ngai & Man-Sing Tin & Qingjie Sun & Pamela Tin & Eng-Kiong Yeoh & Martin C. S. Wong, 2021. "Healthcare Voucher Scheme for Screening of Cardiovascular Risk Factors: A Population-Based Study," IJERPH, MDPI, vol. 18(20), pages 1-16, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    2. Belém Barbosa & José Ramón Saura & Dag Bennett, 2024. "How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses," The Journal of Technology Transfer, Springer, vol. 49(1), pages 69-103, February.
    3. Overstall, Antony M. & Woods, David C. & Martin, Kieran J., 2019. "Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 126-142.
    4. Serrouya, R. & Dickie, M. & DeMars, C. & Wittmann, M.J. & Boutin, S., 2020. "Predicting the effects of restoring linear features on woodland caribou populations," Ecological Modelling, Elsevier, vol. 416(C).
    5. Zadoki Tabo & Chester Kalinda & Lutz Breuer & Christian Albrecht, 2023. "Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    6. Moore, Christopher M. & Catella, Samantha A. & Abbott, Karen C., 2018. "Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback," Ecological Modelling, Elsevier, vol. 368(C), pages 191-197.
    7. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    8. Cécile Cathalot & Erwan G. Roussel & Antoine Perhirin & Vanessa Creff & Jean-Pierre Donval & Vivien Guyader & Guillaume Roullet & Jonathan Gula & Christian Tamburini & Marc Garel & Anne Godfroy & Pier, 2021. "Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    9. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    10. Stahl, Gerhard & Wang, Shaohui & Wendt, Markus, 2011. "Validate Correlation of an ESG: Treasury Yields across," Hannover Economic Papers (HEP) dp-476, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    11. Alex Root, 2019. "Mathematical Modeling of The Challenge to Detect Pancreatic Adenocarcinoma Early with Biomarkers," Challenges, MDPI, vol. 10(1), pages 1-15, April.
    12. Chevallier, Damien & Mourrain, Baptiste & Girondot, Marc, 2020. "Modelling leatherback biphasic indeterminate growth using a modified Gompertz equation," Ecological Modelling, Elsevier, vol. 426(C).
    13. Diane Lefaudeux & Supriya Sen & Kevin Jiang & Alexander Hoffmann, 2022. "Kinetics of mRNA nuclear export regulate innate immune response gene expression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Jessica A Lee & Siavash Riazi & Shahla Nemati & Jannell V Bazurto & Andreas E Vasdekis & Benjamin J Ridenhour & Christopher H Remien & Christopher J Marx, 2019. "Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations," PLOS Genetics, Public Library of Science, vol. 15(11), pages 1-38, November.
    15. Turner, Rolf & Banerjee, Pradeep & Shahlori, Rayomand, 2014. "Optimal Asset Pricing," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i11).
    16. Carturan, Bruno S. & Siewe, Nourridine & Cobbold, Christina A. & Tyson, Rebecca C., 2023. "Bumble bee pollination and the wildflower/crop trade-off: When do wildflower enhancements improve crop yield?," Ecological Modelling, Elsevier, vol. 484(C).
    17. Yerin Jung & Yoonsub Kim & Hwi-Soo Seol & Jong-Hyeon Lee & Jung-Hwan Kwon, 2021. "Spatial Uncertainty in Modeling Inhalation Exposure to Volatile Organic Compounds in Response to the Application of Consumer Spray Products," IJERPH, MDPI, vol. 18(10), pages 1-11, May.
    18. Gregory L Watson & Di Xiong & Lu Zhang & Joseph A Zoller & John Shamshoian & Phillip Sundin & Teresa Bufford & Anne W Rimoin & Marc A Suchard & Christina M Ramirez, 2021. "Pandemic velocity: Forecasting COVID-19 in the US with a machine learning & Bayesian time series compartmental model," PLOS Computational Biology, Public Library of Science, vol. 17(3), pages 1-20, March.
    19. Venolia, Celeste T. & Lavaud, Romain & Green-Gavrielidis, Lindsay A. & Thornber, Carol & Humphries, Austin T., 2020. "Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory," Ecological Modelling, Elsevier, vol. 430(C).
    20. Lecorvaisier, Florian & Pontier, Dominique & Soubeyrand, Benoît & Fouchet, David, 2024. "Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria," Ecological Modelling, Elsevier, vol. 487(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:12:p:2207-:d:242068. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.