IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v487y2024ics0304380023002995.html
   My bibliography  Save this article

Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria

Author

Listed:
  • Lecorvaisier, Florian
  • Pontier, Dominique
  • Soubeyrand, Benoît
  • Fouchet, David

Abstract

Vaccines are one of humankind's greatest weapons against infectious diseases. However, their usefulness is often questioned and the public tends to distrust vaccines. A mathematical model published in the early 2000s predicts the selection of more virulent strains of pathogens when populations are protected with imperfect vaccines, i.e., vaccines which reduce but do not entirely block pathogen transmission, such as toxoid vaccines. In this study, we built a disease-specific competition model to analyze the evolution of diphtheria's virulence under the pressure of a toxoid vaccine. Our results show that i) high vaccine coverage favors the emergence and increase prevalence of avirulent (or less virulent) strains of Corynebacterium diphtheriae (the etiologic agent of diphtheria) and ii) that competition between strains is crucial in the eradication of toxigenic strains when toxoid vaccines are used. We conclude that the use of toxoid vaccines could lead to disease eradication if the interaction between strains is taken into account. Our results could extend to biologically similar systems such as pertussis.

Suggested Citation

  • Lecorvaisier, Florian & Pontier, Dominique & Soubeyrand, Benoît & Fouchet, David, 2024. "Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria," Ecological Modelling, Elsevier, vol. 487(C).
  • Handle: RePEc:eee:ecomod:v:487:y:2024:i:c:s0304380023002995
    DOI: 10.1016/j.ecolmodel.2023.110569
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023002995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sylvain Gandon & Margaret J. Mackinnon & Sean Nee & Andrew F. Read, 2001. "Imperfect vaccines and the evolution of pathogen virulence," Nature, Nature, vol. 414(6865), pages 751-756, December.
    2. Lu, Yikang & Geng, Yini & Gan, Wen & Shi, Lei, 2019. "Impacts of conformist on vaccination campaign in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 526(C).
    3. Sylvain Gandon & Margaret J. Mackinnon & Sean Nee & Andrew F. Read, 2002. "Antitoxin vaccines and pathogen virulence," Nature, Nature, vol. 417(6889), pages 610-610, June.
    4. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    5. Zou, Rongcheng & Duan, Xiaofang & Han, Zhen & Lu, Yikang & Ma, Kewei, 2023. "What information sources can prevent the epidemic: Local information or kin information?," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    6. Benoit Soubeyrand & Stanley A. Plotkin, 2002. "Antitoxin vaccines and pathogen virulence," Nature, Nature, vol. 417(6889), pages 609-610, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Bingjie & Huo, Liang'an, 2024. "The influence of different government policies on the co-evolution of information dissemination, vaccination behavior and disease transmission in multilayer networks," Chaos, Solitons & Fractals, Elsevier, vol. 180(C).
    2. Jiang, Bei & Yuan, Lin & Zou, Rongcheng & Su, Rui & Mi, Yuqiang, 2023. "The effect of migration on vaccination dilemma in networked populations," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    3. Kulsum, Umma & Alam, Muntasir & Kamrujjaman, Md., 2024. "Modeling and investigating the dilemma of early and delayed vaccination driven by the dynamics of imitation and aspiration," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    4. Xie, Xiaoxiao & Huo, Liang'an, 2024. "Co-evolution dynamics between information and epidemic with asymmetric activity levels and community structure in time-varying multiplex networks," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    5. Huang, Wenting & Duan, Xiaofang & Qin, Lijuan & Park, Junpyo, 2023. "Fitness-based mobility enhances the maintenance of biodiversity in the spatial system of cyclic competition," Applied Mathematics and Computation, Elsevier, vol. 456(C).
    6. Deka, Aniruddha & Bhattacharyya, Samit, 2022. "The effect of human vaccination behaviour on strain competition in an infectious disease: An imitation dynamic approach," Theoretical Population Biology, Elsevier, vol. 143(C), pages 62-76.
    7. Fatima-Zahra Jaouimaa & Daniel Dempsey & Suzanne Van Osch & Stephen Kinsella & Kevin Burke & Jason Wyse & James Sweeney, 2021. "An age-structured SEIR model for COVID-19 incidence in Dublin, Ireland with framework for evaluating health intervention cost," PLOS ONE, Public Library of Science, vol. 16(12), pages 1-25, December.
    8. Belém Barbosa & José Ramón Saura & Dag Bennett, 2024. "How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses," The Journal of Technology Transfer, Springer, vol. 49(1), pages 69-103, February.
    9. Overstall, Antony M. & Woods, David C. & Martin, Kieran J., 2019. "Bayesian prediction for physical models with application to the optimization of the synthesis of pharmaceutical products using chemical kinetics," Computational Statistics & Data Analysis, Elsevier, vol. 132(C), pages 126-142.
    10. Serrouya, R. & Dickie, M. & DeMars, C. & Wittmann, M.J. & Boutin, S., 2020. "Predicting the effects of restoring linear features on woodland caribou populations," Ecological Modelling, Elsevier, vol. 416(C).
    11. Dai, Hui & Wang, Xiaoyue & Lu, Yikang & Hou, Yunxiang & Shi, Lei, 2024. "The effect of intraspecific cooperation in a three-species cyclic predator-prey model," Applied Mathematics and Computation, Elsevier, vol. 470(C).
    12. Zadoki Tabo & Chester Kalinda & Lutz Breuer & Christian Albrecht, 2023. "Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    13. Moore, Christopher M. & Catella, Samantha A. & Abbott, Karen C., 2018. "Population dynamics of mutualism and intraspecific density dependence: How θ-logistic density dependence affects mutualistic positive feedback," Ecological Modelling, Elsevier, vol. 368(C), pages 191-197.
    14. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    15. Cécile Cathalot & Erwan G. Roussel & Antoine Perhirin & Vanessa Creff & Jean-Pierre Donval & Vivien Guyader & Guillaume Roullet & Jonathan Gula & Christian Tamburini & Marc Garel & Anne Godfroy & Pier, 2021. "Hydrothermal plumes as hotspots for deep-ocean heterotrophic microbial biomass production," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    16. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    17. Hou, Yunxiang & Lu, Yikang & Dong, Yuting & Jin, Libin & Shi, Lei, 2023. "Impact of different social attitudes on epidemic spreading in activity-driven networks," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    18. Stahl, Gerhard & Wang, Shaohui & Wendt, Markus, 2011. "Validate Correlation of an ESG: Treasury Yields across," Hannover Economic Papers (HEP) dp-476, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    19. Alex Root, 2019. "Mathematical Modeling of The Challenge to Detect Pancreatic Adenocarcinoma Early with Biomarkers," Challenges, MDPI, vol. 10(1), pages 1-15, April.
    20. Gao, Bo & Hong, Jie & Guo, Hao & Dong, Suyalatu & Lan, Zhong-Zhou, 2023. "Cooperative evolution and symmetry breaking in interdependent networks based on alliance mechanisms," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:487:y:2024:i:c:s0304380023002995. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.