IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0102367.html
   My bibliography  Save this article

Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms

Author

Listed:
  • Tom Shatwell
  • Jan Köhler
  • Andreas Nicklisch

Abstract

In lakes, trophic change and climate change shift the relationship between nutrients and physical factors, like temperature and photoperiod, and interactions between these factors should affect the growth of phytoplankton species differently. We therefore determined the relationship between P-limited specific growth rates and P-quota (biovolume basis) of Stephanodiscus minutulus and Nitzschia acicularis (diatoms) at or near light saturation in axenic, semi-continuous culture at 10, 15 and 20 °C and at 6, 9 and 12 h d−1 photoperiod. Photoperiod treatments were performed at constant daily light exposure to allow comparison. Under these conditions, we also performed competition experiments and estimated relative P-uptake rates of the species. Temperature strongly affected P-limited growth rates and relative P uptake rates, whereas photoperiod only affected maximum growth rates. S. minutulus used internal P more efficiently than N. acicularis. N. acicularis was the superior competitor for P due to a higher relative uptake rate and its superiority increased with increasing temperature and photoperiod. S. minutulus conformed to the Droop relationship but N. acicularis did not. A model with a temperature-dependent normalised half-saturation coefficient adequately described the factor interactions of both species. The temperature dependence of the quota model reflected each species’ specific adaptation to its ecological niche. The results demonstrate that increases in temperature or photoperiod can partially compensate for a decrease in P-quota under moderately limiting conditions, like during spring in temperate lakes. Thus warming may counteract de-eutrophication to some degree and a relative shift in growth factors can influence the phytoplankton species composition.

Suggested Citation

  • Tom Shatwell & Jan Köhler & Andreas Nicklisch, 2014. "Temperature and Photoperiod Interactions with Phosphorus-Limited Growth and Competition of Two Diatoms," PLOS ONE, Public Library of Science, vol. 9(7), pages 1-15, July.
  • Handle: RePEc:plo:pone00:0102367
    DOI: 10.1371/journal.pone.0102367
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102367
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0102367&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0102367?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Soetaert, Karline & Petzoldt, Thomas & Setzer, R. Woodrow, 2010. "Solving Differential Equations in R: Package deSolve," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i09).
    2. Soetaert, Karline & Petzoldt, Thomas, 2010. "Inverse Modelling, Sensitivity and Monte Carlo Analysis in R Using Package FME," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i03).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venolia, Celeste T. & Lavaud, Romain & Green-Gavrielidis, Lindsay A. & Thornber, Carol & Humphries, Austin T., 2020. "Modeling the Growth of Sugar Kelp (Saccharina latissima) in Aquaculture Systems using Dynamic Energy Budget Theory," Ecological Modelling, Elsevier, vol. 430(C).
    2. Husson, Bérengère & Sarrazin, Jozée & van Oevelen, Dick & Sarradin, Pierre-Marie & Soetaert, Karline & Menesguen, Alain, 2018. "Modelling the interactions of the hydrothermal mussel Bathymodiolus azoricus with vent fluid," Ecological Modelling, Elsevier, vol. 377(C), pages 35-50.
    3. Littfinski, Tobias & Stricker, Max & Nettmann, Edith & Gehring, Tito & Hiegemann, Heinz & Krimmler, Stefan & Lübken, Manfred & Pant, Deepak & Wichern, Marc, 2022. "A generalized whole-cell model for wastewater-fed microbial fuel cells," Applied Energy, Elsevier, vol. 321(C).
    4. Belém Barbosa & José Ramón Saura & Dag Bennett, 2024. "How do entrepreneurs perform digital marketing across the customer journey? A review and discussion of the main uses," The Journal of Technology Transfer, Springer, vol. 49(1), pages 69-103, February.
    5. Hannah Al Ali & Alireza Daneshkhah & Abdesslam Boutayeb & Zindoga Mukandavire, 2022. "Examining Type 1 Diabetes Mathematical Models Using Experimental Data," IJERPH, MDPI, vol. 19(2), pages 1-20, January.
    6. Taffi, Marianna & Paoletti, Nicola & Liò, Pietro & Pucciarelli, Sandra & Marini, Mauro, 2015. "Bioaccumulation modelling and sensitivity analysis for discovering key players in contaminated food webs: The case study of PCBs in the Adriatic Sea," Ecological Modelling, Elsevier, vol. 306(C), pages 205-215.
    7. Serrouya, R. & Dickie, M. & DeMars, C. & Wittmann, M.J. & Boutin, S., 2020. "Predicting the effects of restoring linear features on woodland caribou populations," Ecological Modelling, Elsevier, vol. 416(C).
    8. Zadoki Tabo & Chester Kalinda & Lutz Breuer & Christian Albrecht, 2023. "Adapting Strategies for Effective Schistosomiasis Prevention: A Mathematical Modeling Approach," Mathematics, MDPI, vol. 11(12), pages 1-18, June.
    9. Lucash, Melissa S. & Marshall, Adrienne M. & Weiss, Shelby A. & McNabb, John W. & Nicolsky, Dmitry J. & Flerchinger, Gerald N. & Link, Timothy E. & Vogel, Jason G. & Scheller, Robert M. & Abramoff, Ro, 2023. "Burning trees in frozen soil: Simulating fire, vegetation, soil, and hydrology in the boreal forests of Alaska," Ecological Modelling, Elsevier, vol. 481(C).
    10. Hussnain Mukhtar & Yu-Pin Lin & Oleg V. Shipin & Joy R. Petway, 2017. "Modeling Nitrogen Dynamics in a Waste Stabilization Pond System Using Flexible Modeling Environment with MCMC," IJERPH, MDPI, vol. 14(7), pages 1-15, July.
    11. Yan, Chuan & Zhang, Zhibin, 2018. "Dome-shaped transition between positive and negative interactions maintains higher persistence and biomass in more complex ecological networks," Ecological Modelling, Elsevier, vol. 370(C), pages 14-21.
    12. Lamonica, Dominique & Herbach, Ulysse & Orias, Frédéric & Clément, Bernard & Charles, Sandrine & Lopes, Christelle, 2016. "Mechanistic modelling of daphnid-algae dynamics within a laboratory microcosm," Ecological Modelling, Elsevier, vol. 320(C), pages 213-230.
    13. Mariano Méndez-Suárez & Ignacio Danvila-del-Valle, 2023. "Negative Word of Mouth (NWOM) using Compartmental Epidemiological Models in Banking Digital Transformation," Contemporary Economics, University of Economics and Human Sciences in Warsaw., vol. 17(1), March.
    14. Alex Root, 2019. "Mathematical Modeling of The Challenge to Detect Pancreatic Adenocarcinoma Early with Biomarkers," Challenges, MDPI, vol. 10(1), pages 1-15, April.
    15. Jinyoung Yang & Jeffrey S. Rosenthal, 2017. "Automatically tuned general-purpose MCMC via new adaptive diagnostics," Computational Statistics, Springer, vol. 32(1), pages 315-348, March.
    16. Chevallier, Damien & Mourrain, Baptiste & Girondot, Marc, 2020. "Modelling leatherback biphasic indeterminate growth using a modified Gompertz equation," Ecological Modelling, Elsevier, vol. 426(C).
    17. repec:jss:jstsof:33:i09 is not listed on IDEAS
    18. Turner, Rolf & Banerjee, Pradeep & Shahlori, Rayomand, 2014. "Optimal Asset Pricing," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 58(i11).
    19. Carturan, Bruno S. & Siewe, Nourridine & Cobbold, Christina A. & Tyson, Rebecca C., 2023. "Bumble bee pollination and the wildflower/crop trade-off: When do wildflower enhancements improve crop yield?," Ecological Modelling, Elsevier, vol. 484(C).
    20. Chengyao Jiang & Ke Xu & Jiahui Rao & Jiaming Liu & Yushan Li & Yu Song & Mengyao Li & Yangxia Zheng & Wei Lu, 2024. "Establishment and Solution of a Finite Element Gas Exchange Model in Greenhouse-Grown Tomatoes for Two-Dimensional Porous Media with Light Quantity and Light Direction," Agriculture, MDPI, vol. 14(8), pages 1-19, July.
    21. Lecorvaisier, Florian & Pontier, Dominique & Soubeyrand, Benoît & Fouchet, David, 2024. "Using a dynamical model to study the impact of a toxoid vaccine on the evolution of a bacterium: The example of diphtheria," Ecological Modelling, Elsevier, vol. 487(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0102367. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.