IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i9p1828-d165533.html
   My bibliography  Save this article

The Effects of Vitamin E from Elaeis guineensis (Oil Palm) in a Rat Model of Bone Loss Due to Metabolic Syndrome

Author

Listed:
  • Sok Kuan Wong

    (Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia)

  • Kok-Yong Chin

    (Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia)

  • Farihah Hj Suhaimi

    (Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia)

  • Fairus Ahmad

    (Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia)

  • Soelaiman Ima-Nirwana

    (Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaakob Latif, Bandar Tun Razak, Cheras 56000, Kuala Lumpur, Malaysia)

Abstract

The beneficial effects of vitamin E in improving components of MetS or bone loss have been established. This study aimed to investigate the potential of palm vitamin E (PVE) as a single agent, targeting MetS and bone loss concurrently, using a MetS animal model. Twelve-week-old male Wistar rats were divided into five groups. The baseline group was sacrificed upon arrival. The normal group was given standard rat chow. The remaining three groups were fed with high-carbohydrate high-fat (HCHF) diet and treated with tocopherol-stripped corn oil (vehicle), 60 mg/kg or 100 mg/kg PVE. At the end of the study, the rats were evaluated for MetS parameters and bone density. After euthanasia, blood and femurs were harvested for the evaluation of lipid profile, bone histomorphometric analysis, and remodeling markers. PVE improved blood pressure, glycemic status, and lipid profile; increased osteoblast surface, osteoid surface, bone volume, and trabecular thickness, as well as decreased eroded surface and single-labeled surface. Administration of PVE also significantly reduced leptin level in the HCHF rats. PVE is a potential agent in concurrently preventing MetS and protecting bone loss. This may be, in part, achieved by reducing the leptin level and modulating the bone remodeling activity in male rats.

Suggested Citation

  • Sok Kuan Wong & Kok-Yong Chin & Farihah Hj Suhaimi & Fairus Ahmad & Soelaiman Ima-Nirwana, 2018. "The Effects of Vitamin E from Elaeis guineensis (Oil Palm) in a Rat Model of Bone Loss Due to Metabolic Syndrome," IJERPH, MDPI, vol. 15(9), pages 1-12, August.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:9:p:1828-:d:165533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/9/1828/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/9/1828/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alan R. Saltiel & C. Ronald Kahn, 2001. "Insulin signalling and the regulation of glucose and lipid metabolism," Nature, Nature, vol. 414(6865), pages 799-806, December.
    2. Gérard Karsenty & Mathieu Ferron, 2012. "The contribution of bone to whole-organism physiology," Nature, Nature, vol. 481(7381), pages 314-320, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sok Kuan Wong & Kok-Yong Chin & Soelaiman Ima-Nirwana, 2019. "The Effects of Tocotrienol on Bone Peptides in a Rat Model of Osteoporosis Induced by Metabolic Syndrome: The Possible Communication between Bone Cells," IJERPH, MDPI, vol. 16(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fang Wang & Linfeng Lei & Zhaobin Wang & Yulong Yin & Huansheng Yang & Zhe Yang & Jiashun Chen, 2022. "Differentially expressed genes in the longissimus dorsi muscle between the Chinese indigenous Ningxiang pig and Large White breed using RNA sequencing," Czech Journal of Animal Science, Czech Academy of Agricultural Sciences, vol. 67(11), pages 442-453.
    2. Julian Krauskopf & Theo M de Kok & Shelli J Schomaker & Mark Gosink & Deborah A Burt & Patricia Chandler & Roscoe L Warner & Kent J Johnson & Florian Caiment & Jos C Kleinjans & Jiri Aubrecht, 2017. "Serum microRNA signatures as "liquid biopsies" for interrogating hepatotoxic mechanisms and liver pathogenesis in human," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-17, May.
    3. Cemal Erdem & Sean M. Gross & Laura M. Heiser & Marc R. Birtwistle, 2023. "MOBILE pipeline enables identification of context-specific networks and regulatory mechanisms," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    4. Jaromir Jarecki & Teresa Małecka-Masalska & Ewa Kosior-Jarecka & Wojciech Widuchowski & Piotr Krasowski & Martina Gutbier & Maciej Dobrzyński & Tomasz Blicharski, 2022. "Concentration of Selected Metalloproteinases and Osteocalcin in the Serum and Synovial Fluid of Obese Women with Advanced Knee Osteoarthritis," IJERPH, MDPI, vol. 19(6), pages 1-13, March.
    5. Yafei Yuan & Fang Kong & Hanwen Xu & Angqi Zhu & Nieng Yan & Chuangye Yan, 2022. "Cryo-EM structure of human glucose transporter GLUT4," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Yan-Ping Zhang & Wen-Hong Zhang & Pan Zhang & Qi Li & Yue Sun & Jia-Wen Wang & Shaobing O. Zhang & Tao Cai & Cheng Zhan & Meng-Qiu Dong, 2022. "Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    7. Eunyoung Kim & Jiamei Cui & Inhae Kang & Guiguo Zhang & Yunkyoung Lee, 2021. "Potential Antidiabetic Effects of Seaweed Extracts by Upregulating Glucose Utilization and Alleviating Inflammation in C2C12 Myotubes," IJERPH, MDPI, vol. 18(3), pages 1-13, February.
    8. Hui Xia & Charlotte Scholtes & Catherine R. Dufour & Carlo Ouellet & Majid Ghahremani & Vincent Giguère, 2022. "Insulin action and resistance are dependent on a GSK3β-FBXW7-ERRα transcriptional axis," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    9. Gunnar Cedersund & Jacob Roll & Erik Ulfhielm & Anna Danielsson & Henrik Tidefelt & Peter Strålfors, 2008. "Model-Based Hypothesis Testing of Key Mechanisms in Initial Phase of Insulin Signaling," PLOS Computational Biology, Public Library of Science, vol. 4(6), pages 1-10, June.
    10. Nicholas S. Kirk & Qi Chen & Yingzhe Ginger Wu & Anastasia L. Asante & Haitao Hu & Juan F. Espinosa & Francisco Martínez-Olid & Mai B. Margetts & Faiz A. Mohammed & Vladislav V. Kiselyov & David G. Ba, 2022. "Activation of the human insulin receptor by non-insulin-related peptides," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    11. Mohd Zamri Bin Haji Ismail & Matt D Hodges & Michael Boylan & Rajesh Achall & Alan Shirras & Susan J Broughton, 2015. "The Drosophila Insulin Receptor Independently Modulates Lifespan and Locomotor Senescence," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-21, May.
    12. Kaoru Ohashi & Hisako Komada & Shinsuke Uda & Hiroyuki Kubota & Toshinao Iwaki & Hiroki Fukuzawa & Yasunori Komori & Masashi Fujii & Yu Toyoshima & Kazuhiko Sakaguchi & Wataru Ogawa & Shinya Kuroda, 2015. "Glucose Homeostatic Law: Insulin Clearance Predicts the Progression of Glucose Intolerance in Humans," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-19, December.
    13. Lei Ying & Luyao Wang & Kaiwen Guo & Yushu Hou & Na Li & Shuyi Wang & Xingfeng Liu & Qijin Zhao & Jie Zhou & Longwei Zhao & Jianlou Niu & Chuchu Chen & Lintao Song & Shaocong Hou & Lijuan Kong & Xiaok, 2021. "Paracrine FGFs target skeletal muscle to exert potent anti-hyperglycemic effects," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    14. Katarina Baralić & Aleksandra Buha Djordjevic & Katarina Živančević & Evica Antonijević & Milena Anđelković & Dragana Javorac & Marijana Ćurčić & Zorica Bulat & Biljana Antonijević & Danijela Đukić-Ćo, 2020. "Toxic Effects of the Mixture of Phthalates and Bisphenol A—Subacute Oral Toxicity Study in Wistar Rats," IJERPH, MDPI, vol. 17(3), pages 1-24, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:9:p:1828-:d:165533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.