IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i8p1571-d159799.html
   My bibliography  Save this article

Increasing Probability of Heat-Related Mortality in a Mediterranean City Due to Urban Warming

Author

Listed:
  • Andri Pyrgou

    (Energy, Environment and Water Research Center, The Cyprus Institute, P.O. Box 27456, Nicosia 1645, Cyprus)

  • Mat Santamouris

    (The Anita Lawrence Chair in High Performance Architecture, School of Built Environment, University of New South Wales, Sydney 2052, Australia)

Abstract

Extreme temperatures impose thermal stress on human health, resulting in increased hospitalizations and mortality rate. We investigated the circulatory and respiratory causes of death for the years 2007 to 2014 inclusive for the urban and rural areas of Nicosia, Cyprus under urban heatwave and non-heatwave conditions. Heatwaves were defined as four or more consecutive days with mean urban daily temperature over the 90th percentile threshold temperature of the eight investigated years. Lag period of adverse health effects was found to be up to three days following the occurrence of high temperatures. The relative risk (RR) for mortality rate under heatwave and non-heatwave conditions was found taking in consideration the lag period. The results showed the increase of mortality risk particularly for men of ages 65–69 (RR = 2.38) and women of ages 65–74 (around RR = 2.54) in the urban area, showing that women were more vulnerable to heat extremities. High temperatures were also associated with high ozone concentrations, but they did not impose an excess risk factor, as they did not reach extreme values. This analysis highlights the importance of preparing for potential heat related health impacts even in Cyprus, which is an island with frequent heatwaves.

Suggested Citation

  • Andri Pyrgou & Mat Santamouris, 2018. "Increasing Probability of Heat-Related Mortality in a Mediterranean City Due to Urban Warming," IJERPH, MDPI, vol. 15(8), pages 1-14, July.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:8:p:1571-:d:159799
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/8/1571/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/8/1571/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J. Lelieveld & Y. Proestos & P. Hadjinicolaou & M. Tanarhte & E. Tyrlis & G. Zittis, 2016. "Strongly increasing heat extremes in the Middle East and North Africa (MENA) in the 21st century," Climatic Change, Springer, vol. 137(1), pages 245-260, July.
    2. John Paravantis & Mat Santamouris & Constantinos Cartalis & Chrysanthi Efthymiou & Nikoletta Kontoulis, 2017. "Mortality Associated with High Ambient Temperatures, Heatwaves, and the Urban Heat Island in Athens, Greece," Sustainability, MDPI, vol. 9(4), pages 1-22, April.
    3. Sue Smith & Alex J. Elliot & Shakoor Hajat & Angie Bone & Chris Bates & Gillian E. Smith & Sari Kovats, 2016. "The Impact of Heatwaves on Community Morbidity and Healthcare Usage: A Retrospective Observational Study Using Real-Time Syndromic Surveillance," IJERPH, MDPI, vol. 13(1), pages 1-12, January.
    4. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elena Di Pirro & Peter Roebeling & Lorenzo Sallustio & Marco Marchetti & Bruno Lasserre, 2023. "Cost-Effectiveness of Nature-Based Solutions under Different Implementation Scenarios: A National Perspective for Italian Urban Areas," Land, MDPI, vol. 12(3), pages 1-19, March.
    2. Marco Morabito & Alessandro Messeri & Pascal Noti & Ana Casanueva & Alfonso Crisci & Sven Kotlarski & Simone Orlandini & Cornelia Schwierz & Christoph Spirig & Boris R.M. Kingma & Andreas D. Flouris &, 2019. "An Occupational Heat–Health Warning System for Europe: The HEAT-SHIELD Platform," IJERPH, MDPI, vol. 16(16), pages 1-21, August.
    3. Nikolaos Roukounakis & Konstantinos V. Varotsos & Dimitrios Katsanos & Ioannis Lemesios & Christos Giannakopoulos & Adrianos Retalis, 2023. "High Resolution WRF Modelling of Extreme Heat Events and Mapping of the Urban Heat Island Characteristics in Athens, Greece," Sustainability, MDPI, vol. 15(23), pages 1-21, December.
    4. Songxin Zheng & Lichen Liu & Xiaofeng Dong & Yanqing Hu & Pengpeng Niu, 2022. "Dominance of Influencing Factors on Cooling Effect of Urban Parks in Different Climatic Regions," IJERPH, MDPI, vol. 19(23), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R Varela & L Rodríguez-Díaz & M deCastro, 2020. "Persistent heat waves projected for Middle East and North Africa by the end of the 21st century," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-18, November.
    2. Ioanna Kyprianou & Despina Serghides & Harriet Thomson & Salvatore Carlucci, 2023. "Learning from the Past: The Impacts of Economic Crises on Energy Poverty Mortality and Rural Vulnerability," Energies, MDPI, vol. 16(13), pages 1-13, July.
    3. Sarah Ann Wheeler & Céline Nauges & Alec Zuo, 2021. "How stable are Australian farmers’ climate change risk perceptions? New evidence of the feedback loop between risk perceptions and behaviour," Post-Print hal-04670841, HAL.
    4. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    5. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    6. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    7. Katlego P. Ncongwane & Joel O. Botai & Venkataraman Sivakumar & Christina M. Botai & Abiodun M. Adeola, 2021. "Characteristics and Long-Term Trends of Heat Stress for South Africa," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    8. Malik, Ihtisham A. & Chowdhury, Hasibul & Alam, Md Samsul, 2023. "Equity market response to natural disasters: Does firm's corporate social responsibility make difference?," Global Finance Journal, Elsevier, vol. 55(C).
    9. Jascha Lehmann & Dim Coumou & Katja Frieler, 2015. "Increased record-breaking precipitation events under global warming," Climatic Change, Springer, vol. 132(4), pages 501-515, October.
    10. Weixing Ma & Tinglin Huang & Xuan Li & Zizhen Zhou & Yang Li & Kang Zeng, 2015. "The Effects of Storm Runoff on Water Quality and the Coping Strategy of a Deep Canyon-Shaped Source Water Reservoir in China," IJERPH, MDPI, vol. 12(7), pages 1-17, July.
    11. Cotto, Olivier & Chevin, Luis-Miguel, 2020. "Fluctuations in lifetime selection in an autocorrelated environment," Theoretical Population Biology, Elsevier, vol. 134(C), pages 119-128.
    12. John A. Paravantis & Panagiotis D. Tasios & Vasileios Dourmas & Georgios Andreakos & Konstantinos Velaoras & Nikoletta Kontoulis & Panagiota Mihalakakou, 2021. "A Regression Analysis of the Carbon Footprint of Megacities," Sustainability, MDPI, vol. 13(3), pages 1-24, January.
    13. van der Linden, Sander, 2014. "On the relationship between personal experience, affect and risk perception: the case of climate change," LSE Research Online Documents on Economics 57689, London School of Economics and Political Science, LSE Library.
    14. Vélez-Espino, Luis A. & Koops, Marten A., 2012. "Capacity for increase, compensatory reserves, and catastrophes as determinants of minimum viable population in freshwater fishes," Ecological Modelling, Elsevier, vol. 247(C), pages 319-326.
    15. Weijia Wang & Kun Shi & Xiwen Wang & Yunlin Zhang & Boqiang Qin & Yibo Zhang & R. Iestyn Woolway, 2024. "The impact of extreme heat on lake warming in China," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    16. Fernando Goulart & Frédéric Mertens, 2017. "The Late mangos- Is There Any Doubt Humans Are Inducing Climate Change?," Biomedical Journal of Scientific & Technical Research, Biomedical Research Network+, LLC, vol. 1(7), pages 2022-2024, December.
    17. Zbigniew W. Kundzewicz & Adam Choryński & Janusz Olejnik & Hans J. Schellnhuber & Marek Urbaniak & Klaudia Ziemblińska, 2023. "Climate Change Science and Policy—A Guided Tour across the Space of Attitudes and Outcomes," Sustainability, MDPI, vol. 15(6), pages 1-20, March.
    18. Maaz Gardezi & J. Gordon Arbuckle, 2019. "Spatially Representing Vulnerability to Extreme Rain Events Using Midwestern Farmers’ Objective and Perceived Attributes of Adaptive Capacity," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 17-34, January.
    19. Atefeh Tamaskani Esfehankalateh & Jack Ngarambe & Geun Young Yun, 2021. "Influence of Tree Canopy Coverage and Leaf Area Density on Urban Heat Island Mitigation," Sustainability, MDPI, vol. 13(13), pages 1-14, July.
    20. Isabel Dorado-Liñán & Blanca Ayarzagüena & Flurin Babst & Guobao Xu & Luis Gil & Giovanna Battipaglia & Allan Buras & Vojtěch Čada & J. Julio Camarero & Liam Cavin & Hugues Claessens & Igor Drobyshev , 2022. "Jet stream position explains regional anomalies in European beech forest productivity and tree growth," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:8:p:1571-:d:159799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.