IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v39y2019i1p17-34.html
   My bibliography  Save this article

Spatially Representing Vulnerability to Extreme Rain Events Using Midwestern Farmers’ Objective and Perceived Attributes of Adaptive Capacity

Author

Listed:
  • Maaz Gardezi
  • J. Gordon Arbuckle

Abstract

Potential climate‐change‐related impacts to agriculture in the upper Midwest pose serious economic and ecological risks to the U.S. and the global economy. On a local level, farmers are at the forefront of responding to the impacts of climate change. Hence, it is important to understand how farmers and their farm operations may be more or less vulnerable to changes in the climate. A vulnerability index is a tool commonly used by researchers and practitioners to represent the geographical distribution of vulnerability in response to global change. Most vulnerability assessments measure objective adaptive capacity using secondary data collected by governmental agencies. However, other scholarship on human behavior has noted that sociocultural and cognitive factors, such as risk perceptions and perceived capacity, are consequential for modulating people's actual vulnerability. Thus, traditional assessments can potentially overlook people's subjective perceptions of changes in climate and extreme weather events and the extent to which people feel prepared to take necessary steps to cope with and respond to the negative effects of climate change. This article addresses this knowledge gap by: (1) incorporating perceived adaptive capacity into a vulnerability assessment; (2) using spatial smoothing to aggregate individual‐level vulnerabilities to the county level; and (3) evaluating the relationships among different dimensions of adaptive capacity to examine whether perceived capacity should be integrated into vulnerability assessments. The result suggests that vulnerability assessments that rely only on objective measures might miss important sociocognitive dimensions of capacity. Vulnerability indices and maps presented in this article can inform engagement strategies for improving environmental sustainability in the region.

Suggested Citation

  • Maaz Gardezi & J. Gordon Arbuckle, 2019. "Spatially Representing Vulnerability to Extreme Rain Events Using Midwestern Farmers’ Objective and Perceived Attributes of Adaptive Capacity," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 17-34, January.
  • Handle: RePEc:wly:riskan:v:39:y:2019:i:1:p:17-34
    DOI: 10.1111/risa.12943
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12943
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12943?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. van Buuren, Stef & Groothuis-Oudshoorn, Karin, 2011. "mice: Multivariate Imputation by Chained Equations in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 45(i03).
    2. Kirstin Dow & Frans Berkhout & Benjamin L. Preston & Richard J. T. Klein & Guy Midgley & M. Rebecca Shaw, 2013. "Limits to adaptation," Nature Climate Change, Nature, vol. 3(4), pages 305-307, April.
    3. J. Arbuckle & Linda Prokopy & Tonya Haigh & Jon Hobbs & Tricia Knoot & Cody Knutson & Adam Loy & Amber Mase & Jean McGuire & Lois Morton & John Tyndall & Melissa Widhalm, 2013. "Climate change beliefs, concerns, and attitudes toward adaptation and mitigation among farmers in the Midwestern United States," Climatic Change, Springer, vol. 117(4), pages 943-950, April.
    4. Kaspar, T.C. & Jaynes, D.B. & Parkin, T.B. & Moorman, T.B. & Singer, J.W., 2012. "Effectiveness of oat and rye cover crops in reducing nitrate losses in drainage water," Agricultural Water Management, Elsevier, vol. 110(C), pages 25-33.
    5. Schenker, Nathaniel & Taylor, Jeremy M. G., 1996. "Partially parametric techniques for multiple imputation," Computational Statistics & Data Analysis, Elsevier, vol. 22(4), pages 425-446, August.
    6. Vermunt, Jeroen K. & Magidson, Jay, 2003. "Latent class models for classification," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 531-537, January.
    7. Dim Coumou & Stefan Rahmstorf, 2012. "A decade of weather extremes," Nature Climate Change, Nature, vol. 2(7), pages 491-496, July.
    8. Susanne Moser & Roger Kasperson & Gary Yohe & Julian Agyeman, 2008. "Adaptation to climate change in the Northeast United States: opportunities, processes, constraints," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 13(5), pages 643-659, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ayorinde Ogunyiola & Maaz Gardezi, 2022. "Restoring sense out of disorder? Farmers’ changing social identities under big data and algorithms," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 39(4), pages 1451-1464, December.
    2. Nikolaos Argyris & Valentina Ferretti & Simon French & Seth Guikema & Gilberto Montibeller, 2019. "Advances in Spatial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 39(1), pages 1-8, January.
    3. Jagadish Thaker & Nicholas Smith & Anthony Leiserowitz, 2020. "Global Warming Risk Perceptions in India," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2481-2497, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarah Ann Wheeler & Céline Nauges & Alec Zuo, 2021. "How stable are Australian farmers’ climate change risk perceptions? New evidence of the feedback loop between risk perceptions and behaviour," Post-Print hal-04670841, HAL.
    2. Paolo Brunori & Pedro Salas-Rojo & Paolo Verme, 2022. "Estimating Inequality with Missing Incomes," Working Papers 616, ECINEQ, Society for the Study of Economic Inequality.
    3. Lana Salih Joelsson & Evangelia Elenis & Kjell Wanggren & Anna Berglund & Anastasia N Iliadou & Carolyn E Cesta & Sunni L Mumford & Richard White & Tanja Tydén & Alkistis Skalkidou, 2019. "Investigating the effect of lifestyle risk factors upon number of aspirated and mature oocytes in in vitro fertilization cycles: Interaction with antral follicle count," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.
    4. Hochman, Zvi & Horan, Heidi & Reddy, D. Raji & Sreenivas, G. & Tallapragada, Chiranjeevi & Adusumilli, Ravindra & Gaydon, Donald S. & Laing, Alison & Kokic, Philip & Singh, Kamalesh K. & Roth, Christi, 2017. "Smallholder farmers managing climate risk in India: 2. Is it climate-smart?," Agricultural Systems, Elsevier, vol. 151(C), pages 61-72.
    5. repec:jss:jstsof:45:i02 is not listed on IDEAS
    6. Kristian Kleinke & Jost Reinecke, 2013. "Multiple imputation of incomplete zero-inflated count data," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 67(3), pages 311-336, August.
    7. Encarnita Mariotti-Ferrandiz & Hang-Phuong Pham & Sophie Dulauroy & Olivier Gorgette & David Klatzmann & Pierre-André Cazenave & Sylviane Pied & Adrien Six, 2016. "A TCRβ Repertoire Signature Can Predict Experimental Cerebral Malaria," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-17, February.
    8. Noémi Kreif & Richard Grieve & Iván Díaz & David Harrison, 2015. "Evaluation of the Effect of a Continuous Treatment: A Machine Learning Approach with an Application to Treatment for Traumatic Brain Injury," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1213-1228, September.
    9. Gallaher, Adam & Graziano, Marcello & Fiaschetti, Maurizio, 2021. "Legacy and shockwaves: A spatial analysis of strengthening resilience of the power grid in Connecticut," Energy Policy, Elsevier, vol. 159(C).
    10. Abhilash Bandam & Eedris Busari & Chloi Syranidou & Jochen Linssen & Detlef Stolten, 2022. "Classification of Building Types in Germany: A Data-Driven Modeling Approach," Data, MDPI, vol. 7(4), pages 1-23, April.
    11. Boonstra Philip S. & Little Roderick J.A. & West Brady T. & Andridge Rebecca R. & Alvarado-Leiton Fernanda, 2021. "A Simulation Study of Diagnostics for Selection Bias," Journal of Official Statistics, Sciendo, vol. 37(3), pages 751-769, September.
    12. Timm Bönke & Markus M. Grabka & Carsten Schröder & Edward N. Wolff & Lennard Zyska, 2019. "The Joint Distribution of Net Worth and Pension Wealth in Germany," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 65(4), pages 834-871, December.
    13. Shelley H. Liu & Yitong Chen & Jordan R. Kuiper & Emily Ho & Jessie P. Buckley & Leah Feuerstahler, 2024. "Applying Latent Variable Models to Estimate Cumulative Exposure Burden to Chemical Mixtures and Identify Latent Exposure Subgroups: A Critical Review and Future Directions," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 16(2), pages 482-502, July.
    14. Bolaños-Valencia, Ingrid & Villegas-Palacio, Clara & López-Gómez, Connie Paola & Berrouet, Lina & Ruiz, Aura, 2019. "Social perception of risk in socio-ecological systems. A qualitative and quantitative analysis," Ecosystem Services, Elsevier, vol. 38(C), pages 1-1.
    15. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    16. Liangyuan Hu & Lihua Li, 2022. "Using Tree-Based Machine Learning for Health Studies: Literature Review and Case Series," IJERPH, MDPI, vol. 19(23), pages 1-13, December.
    17. Moritz Kuhn & Moritz Schularick & Ulrike I. Steins, 2020. "Income and Wealth Inequality in America, 1949–2016," Journal of Political Economy, University of Chicago Press, vol. 128(9), pages 3469-3519.
    18. Norah Alyabs & Sy Han Chiou, 2022. "The Missing Indicator Approach for Accelerated Failure Time Model with Covariates Subject to Limits of Detection," Stats, MDPI, vol. 5(2), pages 1-13, May.
    19. Kaustubh Salvi & Subimal Ghosh, 2016. "Projections of Extreme Dry and Wet Spells in the 21st Century India Using Stationary and Non-stationary Standardized Precipitation Indices," Climatic Change, Springer, vol. 139(3), pages 667-681, December.
    20. Barton, Madeleine G. & Terblanche, John S. & Sinclair, Brent J., 2019. "Incorporating temperature and precipitation extremes into process-based models of African lepidoptera changes the predicted distribution under climate change," Ecological Modelling, Elsevier, vol. 394(C), pages 53-65.
    21. Feldkircher, Martin, 2014. "The determinants of vulnerability to the global financial crisis 2008 to 2009: Credit growth and other sources of risk," Journal of International Money and Finance, Elsevier, vol. 43(C), pages 19-49.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:39:y:2019:i:1:p:17-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.