IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i2p390-d132959.html
   My bibliography  Save this article

Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin

Author

Listed:
  • Domenica Mirauda

    (School of Engineering, Basilicata University, Viale dell’Ateneo Lucano 10, 85100 Potenza, Italy)

  • Marco Ostoich

    (Veneto Regional Environmental Prevention and Protection Agency (ARPAV), Provincial Department of Venice, Via Lissa 6, 30172 Venice-Mestre, Italy)

Abstract

The present study develops an integrated methodology combining the results of the water-quality classification, according to the Water Framework Directive 2000/60/EC—WFD, with those of a mathematical integrity model. It is able to analyse the potential anthropogenic impacts on the receiving water body and to help municipal decision-makers when selecting short/medium/long-term strategic mitigation actions to be performed in a territory. Among the most important causes of water-quality degradation in a river, the focus is placed on pollutants from urban wastewater. In particular, the proposed approach evaluates the efficiency and the accurate localisation of treatment plants in a basin, as well as the capacity of its river to bear the residual pollution loads after the treatment phase. The methodology is applied to a sample catchment area, located in northern Italy, where water quality is strongly affected by high population density and by the presence of agricultural and industrial activities. Nearly 10 years of water-quality data collected through official monitoring are considered for the implementation of the system. The sample basin shows different real and potential pollution conditions, according to the resilience of the river and surroundings, together with the point and diffuse pressure sources acting on the receiving body.

Suggested Citation

  • Domenica Mirauda & Marco Ostoich, 2018. "Assessment of Pressure Sources and Water Body Resilience: An Integrated Approach for Action Planning in a Polluted River Basin," IJERPH, MDPI, vol. 15(2), pages 1-19, February.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:2:p:390-:d:132959
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/2/390/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/2/390/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Prakash P. Shenoy, 1992. "Valuation-Based Systems for Bayesian Decision Analysis," Operations Research, INFORMS, vol. 40(3), pages 463-484, June.
    2. Mohamed Hamouda & Mohamed Nour El-Din & Fawzia Moursy, 2009. "Vulnerability Assessment of Water Resources Systems in the Eastern Nile Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2697-2725, October.
    3. Wei Shi & Jun Xia & Christopher J Gippel & JunXu Chen & Si Hong, 2017. "Influence of disaster risk, exposure and water quality on vulnerability of surface water resources under a changing climate in the Haihe River basin," Water International, Taylor & Francis Journals, vol. 42(4), pages 462-485, May.
    4. Michael Nones, 2016. "Is public participation an added value for river basin management?," European Planning Studies, Taylor & Francis Journals, vol. 24(6), pages 1159-1174, June.
    5. Ross D. Shachter, 1988. "Probabilistic Inference and Influence Diagrams," Operations Research, INFORMS, vol. 36(4), pages 589-604, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rodica-Mihaela Frîncu, 2021. "Long-Term Trends in Water Quality Indices in the Lower Danube and Tributaries in Romania (1996–2017)," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    2. Yucheng Liu & Chuansheng Wang & Yutong Chun & Luxin Yang & Wei Chen & Jack Ding, 2019. "A Novel Method in Surface Water Quality Assessment Based on Improved Variable Fuzzy Set Pair Analysis," IJERPH, MDPI, vol. 16(22), pages 1-24, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. L. Smith & E. Borgonovo, 2007. "Decision Making During Nuclear Power Plant Incidents—A New Approach to the Evaluation of Precursor Events," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1027-1042, August.
    2. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    3. Concha Bielza & Prakash P. Shenoy, 1999. "A Comparison of Graphical Techniques for Asymmetric Decision Problems," Management Science, INFORMS, vol. 45(11), pages 1552-1569, November.
    4. Apiruk Detwarasiti & Ross D. Shachter, 2005. "Influence Diagrams for Team Decision Analysis," Decision Analysis, INFORMS, vol. 2(4), pages 207-228, December.
    5. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    6. Hatem Jemmali & Mohamed Salah Matoussi, 2012. "A Multidimensional Analysis of Water Poverty at A Local Scale- Application of Improved Water Poverty Index for Tunisia," Working Papers 730, Economic Research Forum, revised 2012.
    7. Prakash Shenoy, 1998. "Game Trees For Decision Analysis," Theory and Decision, Springer, vol. 44(2), pages 149-171, April.
    8. Yijing Li & Prakash P. Shenoy, 2012. "A Framework for Solving Hybrid Influence Diagrams Containing Deterministic Conditional Distributions," Decision Analysis, INFORMS, vol. 9(1), pages 55-75, March.
    9. Ricky P. Laureta & Ric Ryan H. Regalado & Ermar B. De La Cruz, 2021. "Climate vulnerability scenario of the agricultural sector in the Bicol River Basin, Philippines," Climatic Change, Springer, vol. 168(1), pages 1-18, September.
    10. Shijin Wang & Yanqiang Wei, 2019. "Water resource system risk and adaptive management of the Chinese Heihe River Basin in Asian arid areas," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(7), pages 1271-1292, October.
    11. David M. Pennock & Michael P. Wellman, 2005. "Graphical Models for Groups: Belief Aggregation and Risk Sharing," Decision Analysis, INFORMS, vol. 2(3), pages 148-164, September.
    12. Demirer, Riza & Shenoy, Prakash P., 2006. "Sequential valuation networks for asymmetric decision problems," European Journal of Operational Research, Elsevier, vol. 169(1), pages 286-309, February.
    13. Yeonjoo Kim & Eun-Sung Chung, 2013. "Assessing climate change vulnerability with group multi-criteria decision making approaches," Climatic Change, Springer, vol. 121(2), pages 301-315, November.
    14. Rajendra Pandey & Ashish Pandey & Ravi Galkate & Hi-Ryong Byun & Bimal Mal, 2010. "Integrating Hydro-Meteorological and Physiographic Factors for Assessment of Vulnerability to Drought," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4199-4217, December.
    15. Saroj Koirala & Yiping Fang & Nirmal Mani Dahal & Chenjia Zhang & Bikram Pandey & Sabita Shrestha, 2020. "Application of Water Poverty Index (WPI) in Spatial Analysis of Water Stress in Koshi River Basin, Nepal," Sustainability, MDPI, vol. 12(2), pages 1-20, January.
    16. Yu, Oliver S., 1990. "5.0. Interface between mental and computer models," Energy, Elsevier, vol. 15(7), pages 621-629.
    17. Lei Wang & Aifeng Lv, 2022. "Identification and Diagnosis of Transboundary River Basin Water Management in China and Neighboring Countries," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    18. Eun-Sung Chung & Kwangjae Won & Yeonjoo Kim & Hosun Lee, 2014. "Water Resource Vulnerability Characteristics by District’s Population Size in a Changing Climate Using Subjective and Objective Weights," Sustainability, MDPI, vol. 6(9), pages 1-17, September.
    19. Sujata Manandhar & Vishnu Pandey & Futaba Kazama, 2012. "Application of Water Poverty Index (WPI) in Nepalese Context: A Case Study of Kali Gandaki River Basin (KGRB)," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(1), pages 89-107, January.
    20. Stephen G. Pauker & John B. Wong, 2005. "The Influence of Influence Diagrams in Medicine," Decision Analysis, INFORMS, vol. 2(4), pages 238-244, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:2:p:390-:d:132959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.