IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0082349.html
   My bibliography  Save this article

Bayesian Networks for Clinical Decision Support in Lung Cancer Care

Author

Listed:
  • M Berkan Sesen
  • Ann E Nicholson
  • Rene Banares-Alcantara
  • Timor Kadir
  • Michael Brady

Abstract

Survival prediction and treatment selection in lung cancer care are characterised by high levels of uncertainty. Bayesian Networks (BNs), which naturally reason with uncertain domain knowledge, can be applied to aid lung cancer experts by providing personalised survival estimates and treatment selection recommendations. Based on the English Lung Cancer Database (LUCADA), we evaluate the feasibility of BNs for these two tasks, while comparing the performances of various causal discovery approaches to uncover the most feasible network structure from expert knowledge and data. We show first that the BN structure elicited from clinicians achieves a disappointing area under the ROC curve of 0.75 (± 0.03), whereas a structure learned by the CAMML hybrid causal discovery algorithm, which adheres with the temporal restrictions, achieves 0.81 (± 0.03). Second, our causal intervention results reveal that BN treatment recommendations, based on prescribing the treatment plan that maximises survival, can only predict the recorded treatment plan 29% of the time. However, this percentage rises to 76% when partial matches are included.

Suggested Citation

  • M Berkan Sesen & Ann E Nicholson & Rene Banares-Alcantara & Timor Kadir & Michael Brady, 2013. "Bayesian Networks for Clinical Decision Support in Lung Cancer Care," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-1, December.
  • Handle: RePEc:plo:pone00:0082349
    DOI: 10.1371/journal.pone.0082349
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0082349
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0082349&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0082349?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Douglas K. Owens & Ross D. Shachter & Robert F. Nease JR, 1997. "Representation and Analysis of Medical Decision Problems with Influence Diagrams," Medical Decision Making, , vol. 17(3), pages 241-262, July.
    2. Ross D. Shachter, 1988. "Probabilistic Inference and Influence Diagrams," Operations Research, INFORMS, vol. 36(4), pages 589-604, August.
    3. S. le Cessie & J. C. van Houwelingen, 1992. "Ridge Estimators in Logistic Regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(1), pages 191-201, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mroczek Teresa & Skica Tomasz & Rodzinka Jacek, 2019. "Optimal Size of the General Government Sector from the Point of View of its Impact on the EU Economies," South East European Journal of Economics and Business, Sciendo, vol. 14(2), pages 95-105, December.
    2. Zsolt Zador & Matthew Sperrin & Andrew T King, 2016. "Predictors of Outcome in Traumatic Brain Injury: New Insight Using Receiver Operating Curve Indices and Bayesian Network Analysis," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-18, July.
    3. Catarina Moreira & Emmanuel Haven & Sandro Sozzo & Andreas Wichert, 2018. "Process mining with real world financial loan applications: Improving inference on incomplete event logs," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-31, December.
    4. Mroczek Teresa & Skica Tomasz & Rodzinka Jacek, 2018. "Application of Probabilistic Inference in Defining Impact of the General Government Sector’s Size on the Economy and Determining the Size of the Sector by the Economy in the EU," Financial Internet Quarterly (formerly e-Finanse), Sciendo, vol. 14(1), pages 1-11, March.
    5. Annemieke Witteveen & Gabriela F. Nane & Ingrid M.H. Vliegen & Sabine Siesling & Maarten J. IJzerman, 2018. "Comparison of Logistic Regression and Bayesian Networks for Risk Prediction of Breast Cancer Recurrence," Medical Decision Making, , vol. 38(7), pages 822-833, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen G. Pauker & John B. Wong, 2005. "The Influence of Influence Diagrams in Medicine," Decision Analysis, INFORMS, vol. 2(4), pages 238-244, December.
    2. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    3. František Dařena & Jan Přichystal, 2018. "Analysis of the Association between Topics in Online Documents and Stock Price Movements," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(6), pages 1431-1439.
    4. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    5. Li Shaoyu & Lu Qing & Fu Wenjiang & Romero Roberto & Cui Yuehua, 2009. "A Regularized Regression Approach for Dissecting Genetic Conflicts that Increase Disease Risk in Pregnancy," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-30, October.
    6. Butaru, Florentin & Chen, Qingqing & Clark, Brian & Das, Sanmay & Lo, Andrew W. & Siddique, Akhtar, 2016. "Risk and risk management in the credit card industry," Journal of Banking & Finance, Elsevier, vol. 72(C), pages 218-239.
    7. Borgonovo, Emanuele & Tonoli, Fabio, 2014. "Decision-network polynomials and the sensitivity of decision-support models," European Journal of Operational Research, Elsevier, vol. 239(2), pages 490-503.
    8. Matthew Herland & Richard A. Bauder & Taghi M. Khoshgoftaar, 2020. "Approaches for identifying U.S. medicare fraud in provider claims data," Health Care Management Science, Springer, vol. 23(1), pages 2-19, March.
    9. Paolo Cimbali & Marco De Leonardis & Alessio Fiume & Barbara La Ganga & Luciana Meoli & Marco Orlandi, 2023. "A decision-making rule to detect insufficient data quality - an application of statistical learning techniques to the non-performing loans banking data," IFC Bulletins chapters, in: Bank for International Settlements (ed.), Post-pandemic landscape for central bank statistics, volume 58, Bank for International Settlements.
    10. Wenfa Li & Hongzhe Liu & Peng Yang & Wei Xie, 2016. "Supporting Regularized Logistic Regression Privately and Efficiently," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-19, June.
    11. Concha Bielza & Prakash P. Shenoy, 1999. "A Comparison of Graphical Techniques for Asymmetric Decision Problems," Management Science, INFORMS, vol. 45(11), pages 1552-1569, November.
    12. M. Revan Özkale & Atif Abbasi, 2022. "Iterative restricted OK estimator in generalized linear models and the selection of tuning parameters via MSE and genetic algorithm," Statistical Papers, Springer, vol. 63(6), pages 1979-2040, December.
    13. Kadri Ulas Akay, 2014. "A graphical evaluation of logistic ridge estimator in mixture experiments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(6), pages 1217-1232, June.
    14. Marco-Antonio Moreno-Ibarra & Yenny Villuendas-Rey & Miltiadis D. Lytras & Cornelio Yáñez-Márquez & Julio-César Salgado-Ramírez, 2021. "Classification of Diseases Using Machine Learning Algorithms: A Comparative Study," Mathematics, MDPI, vol. 9(15), pages 1-21, July.
    15. Yu, Oliver S., 1990. "5.0. Interface between mental and computer models," Energy, Elsevier, vol. 15(7), pages 621-629.
    16. Pecorari,Natalia Gisel & Cuesta Leiva,Jose Antonio, 2023. "Citizen Participation and Political Trust in Latin America and the Caribbean : AMachine Learning Approach," Policy Research Working Paper Series 10335, The World Bank.
    17. Lambert-Lacroix, Sophie & Peyre, Julie, 2006. "Local likelihood regression in generalized linear single-index models with applications to microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 51(3), pages 2091-2113, December.
    18. Scott D. Bass & Lukasz A. Kurgan, 2010. "Discovery of factors influencing patent value based on machine learning in patents in the field of nanotechnology," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(2), pages 217-241, February.
    19. Heungsun Hwang & Hye Suk & Yoshio Takane & Jang-Han Lee & Jooseop Lim, 2015. "Generalized Functional Extended Redundancy Analysis," Psychometrika, Springer;The Psychometric Society, vol. 80(1), pages 101-125, March.
    20. Douglas K. Owens, 2002. "Analytic Tools for Public Health Decision Making," Medical Decision Making, , vol. 22(1_suppl), pages 3-10, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0082349. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.