IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i4p2025-d747260.html
   My bibliography  Save this article

Study on the Maximum Safe Instantaneous Input of the Steering Wheel against Rollover for Trucks on Horizontal Curves

Author

Listed:
  • Jinliang Xu

    (School of Highway, Chang’an University, South 2nd Ring Road, Beilin District, Xi’an 710064, China)

  • Tian Xin

    (School of Highway, Chang’an University, South 2nd Ring Road, Beilin District, Xi’an 710064, China)

  • Chao Gao

    (School of Highway, Chang’an University, South 2nd Ring Road, Beilin District, Xi’an 710064, China)

  • Zhenhua Sun

    (Shaoxing Communications Investment Group Co., Ltd., No.135 Fenglin West Road, Jinghu District, Shaoxing 312000, China)

Abstract

Truck rollover crashes on horizontal curves have been recognized as one of the most serious types of crashes. Driver’s instantaneous emergency steering maneuvers (DIESM) play an important role in truck rollover crashes, but have not received much attention. In the present study, the radius of curvature of the actual vehicle travel path (AVTP) under DIESM was calculated based on the transient bicycle model. Rollover margins were used to evaluate the truck-rollover potential under DIESM. To calculate rollover margins, the lateral acceleration under DIESM was calculated based on the radius of the curvature of the AVTP. A rollover threshold formula was introduced to calculate vehicle’s rollover thresholds by distinguishing two turning conditions. According to rollover margins, the maximum safe instantaneous input of the steering wheel against rollover for trucks was obtained. Moreover, theoretical results were verified by computer simulation. Results showed: (1) The maximum safe instantaneous inputs of the steering wheel were 259°, 212°, 182°, 162°and 147°, respectively, at speeds of 60 km/h, 70 km/h, 80 km, 90 km and 100 km when the superelevation rate was 0, and (2) superelevation significantly affected truck-rollover potential; the worst turning condition was turning from the inside to the outside of the curve. Due to the consideration of the wheelbase, the centroid position, the tire’s cornering stiffness and the suspension roll gain, the prediction results were more accurate.

Suggested Citation

  • Jinliang Xu & Tian Xin & Chao Gao & Zhenhua Sun, 2022. "Study on the Maximum Safe Instantaneous Input of the Steering Wheel against Rollover for Trucks on Horizontal Curves," IJERPH, MDPI, vol. 19(4), pages 1-23, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2025-:d:747260
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/4/2025/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/4/2025/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanna Yin & Huiying Wen & Lu Sun & Wei Hou, 2020. "The Influence of Road Geometry on Vehicle Rollover and Skidding," IJERPH, MDPI, vol. 17(5), pages 1-17, March.
    2. Feng Chen & Xiaoxiang Ma & Suren Chen & Lin Yang, 2016. "Crash Frequency Analysis Using Hurdle Models with Random Effects Considering Short-Term Panel Data," IJERPH, MDPI, vol. 13(11), pages 1-11, October.
    3. Xinhua Mao & Changwei Yuan & Jiahua Gan & Shiqing Zhang, 2019. "Risk Factors Affecting Traffic Accidents at Urban Weaving Sections: Evidence from China," IJERPH, MDPI, vol. 16(9), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ester Olmeda & Enrique Roberto Carrillo Li & Jorge Rodríguez Hernández & Vicente Díaz, 2022. "Lateral Dynamic Simulation of a Bus under Variable Conditions of Camber and Curvature Radius," Mathematics, MDPI, vol. 10(17), pages 1-25, August.
    2. Zhaoshi Geng & Xiaofeng Ji & Rui Cao & Mengyuan Lu & Wenwen Qin, 2022. "A Conflict Measures-Based Extreme Value Theory Approach to Predicting Truck Collisions and Identifying High-Risk Scenes on Two-Lane Rural Highways," Sustainability, MDPI, vol. 14(18), pages 1-24, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fanyu Wang & Junyou Zhang & Shufeng Wang & Sixian Li & Wenlan Hou, 2020. "Analysis of Driving Behavior Based on Dynamic Changes of Personality States," IJERPH, MDPI, vol. 17(2), pages 1-17, January.
    2. Yaqi Liu & Xiaoyuan Wang, 2020. "Differences in Driving Intention Transitions Caused by Driver’s Emotion Evolutions," IJERPH, MDPI, vol. 17(19), pages 1-22, September.
    3. Sheng Dong & Afaq Khattak & Irfan Ullah & Jibiao Zhou & Arshad Hussain, 2022. "Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations," IJERPH, MDPI, vol. 19(5), pages 1-23, March.
    4. Amir Saman Abdollahzadeh Nasiri & Omid Rahmani & Ali Abdi Kordani & Nader Karballaeezadeh & Amir Mosavi, 2020. "Evaluation of Safety in Horizontal Curves of Roads Using a Multi-Body Dynamic Simulation Process," IJERPH, MDPI, vol. 17(16), pages 1-20, August.
    5. Ester Olmeda & Enrique Roberto Carrillo Li & Jorge Rodríguez Hernández & Vicente Díaz, 2022. "Lateral Dynamic Simulation of a Bus under Variable Conditions of Camber and Curvature Radius," Mathematics, MDPI, vol. 10(17), pages 1-25, August.
    6. Jinliang Xu & Miao Jia & Chao Gao & Wenzhen Lv, 2023. "Limited Response of Curve Safety Level to Friction Factor and Superelevation Variation under Repeated Traffic Loads," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    7. Qingzhou Wang & Yaxuan Zhao & Lujia Li & Liying Kong & Wenjing Si, 2024. "Influence of Snowy and Icy Weather on Vehicle Sideslip and Rollover: A Simulation Approach," Sustainability, MDPI, vol. 16(2), pages 1-30, January.
    8. Yuquan Zhou & Yingzhi Wang & Feng Zhang & Hongye Zhou & Keran Sun & Yuhan Yu, 2023. "GATR: A Road Network Traffic Violation Prediction Method Based on Graph Attention Network," IJERPH, MDPI, vol. 20(4), pages 1-18, February.
    9. Zhanji Zheng & Qiaojun Xiang & Xin Gu & Yongfeng Ma & Kangkang Zheng, 2020. "The Influence of Individual Differences on Diverging Behavior at the Weaving Sections of an Urban Expressway," IJERPH, MDPI, vol. 18(1), pages 1-17, December.
    10. Jinhua Tan & Li Gong & Xuqian Qin, 2019. "Effect of Imitation Phenomenon on Two-Lane Traffic Safety in Fog Weather," IJERPH, MDPI, vol. 16(19), pages 1-15, October.
    11. Jinliang Xu & Wenzhen Lv & Chao Gao & Yufeng Bi & Minghao Mu & Guangxun E, 2022. "Why Do Drivers’ Collision Avoidance Maneuvers Tend to Cause SUVs to Sideslip or Rollover on Horizontal Curve and Grade Combinations?—An Analysis of the Causes Based on a Modified Multibody Dynamics Mo," IJERPH, MDPI, vol. 19(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2025-:d:747260. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.