IDEAS home Printed from https://ideas.repec.org/a/spr/nathaz/v120y2024i12d10.1007_s11069-024-06622-0.html
   My bibliography  Save this article

Remote sensing and GIS-based inventory and analysis of the unprecedented 2021 forest fires in Türkiye’s history

Author

Listed:
  • Remzi Eker

    (İzmir Kâtip Çelebi University)

  • Tunahan Çınar

    (Düzce University)

  • İsmail Baysal

    (İzmir Kâtip Çelebi University)

  • Abdurrahim Aydın

    (Düzce University)

Abstract

In the summer of 2021, Türkiye experienced unprecedented forest fire events. Throughout that fire season, a total of 291 fire incidents, covering an area of 202,361 hectares, dominated the public agenda. This study aimed to document and analyze the 30 large fires (affecting over 100 hectares) of 2021 using remote sensing and GIS techniques. A comprehensive fire database was established, encompassing information on burned areas, fire severity, and fuel types, determined from forest-stand types and topographical properties including slope, elevation, and aspect (in eight directions). Sentinel-2 satellite images were utilized to calculate dNBR values for assessing fire severity, analyzed in the Google Earth Engine platform. Three GIS-integrated Python scripts were developed to construct the fire database. In total, 164,658 hectares were affected by these large fires, occurring solely in three regions of Türkiye: the Mediterranean, Aegean, and Eastern Anatolian. The majority of the burned area was situated in the Mediterranean region (59%), with only 3% in Eastern Anatolia. The burned areas ranged from a minimum of 150 hectares to a maximum of 58,798 hectares. Additionally, 679 hectares of residential areas and 22,601 hectares of agricultural land were impacted by the fire events. For each fire, 21 fuel types and their distribution were determined. The most prevalent fire-prone class, “Pure Turkish pine species (Pr-Çz),” accounted for 59.56% of the total affected area (99,516 hectares). Another significant fire-prone pine species, the “Pure Black pine species (Pr-Çk),” covered 7.67% (12,811 hectares) of the affected area. Fuel types were evaluated by considering both forest-stand development stages and canopy closure. Regarding forest-stand development stages, the largest area percentage burned belonged to the “Mature” class (26.48%).

Suggested Citation

  • Remzi Eker & Tunahan Çınar & İsmail Baysal & Abdurrahim Aydın, 2024. "Remote sensing and GIS-based inventory and analysis of the unprecedented 2021 forest fires in Türkiye’s history," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 120(12), pages 10687-10707, September.
  • Handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06622-0
    DOI: 10.1007/s11069-024-06622-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11069-024-06622-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11069-024-06622-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Jianyi & Rinaldi, Sergio, 2009. "A derivation of the statistical characteristics of forest fires," Ecological Modelling, Elsevier, vol. 220(7), pages 898-903.
    2. Lanbo Feng & Huashun Xiao & Zhigao Yang & Gui Zhang, 2022. "A Multiscale Normalization Method of a Mixed-Effects Model for Monitoring Forest Fires Using Multi-Sensor Data," Sustainability, MDPI, vol. 14(3), pages 1-16, January.
    3. Abdullah Al Saim & Mohamed H. Aly, 2022. "Machine Learning for Modeling Wildfire Susceptibility at the State Level: An Example from Arkansas, USA," Geographies, MDPI, vol. 2(1), pages 1-17, January.
    4. Matthias M. Boer & Víctor Resco de Dios & Ross A. Bradstock, 2020. "Unprecedented burn area of Australian mega forest fires," Nature Climate Change, Nature, vol. 10(3), pages 171-172, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mark C. Quigley & Januka Attanayake & Andrew King & Fabian Prideaux, 2020. "A multi-hazards earth science perspective on the COVID-19 pandemic: the potential for concurrent and cascading crises," Environment Systems and Decisions, Springer, vol. 40(2), pages 199-215, June.
    2. de Benicio, Rosilda B. & Stošić, Tatijana & de Figueirêdo, P.H. & Stošić, Borko D., 2013. "Multifractal behavior of wild-land and forest fire time series in Brazil," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(24), pages 6367-6374.
    3. Mauro Hermann & Heini Wernli & Matthias Röthlisberger, 2024. "Drastic increase in the magnitude of very rare summer-mean vapor pressure deficit extremes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Kwadwo YEBOAH BOTAH, 2023. "Forest Fires In A Changing Climate: Risk Assessment And Management In Leiria National Forest, Portugal," Eastern European Journal for Regional Studies (EEJRS), Center for Studies in European Integration (CSEI), Academy of Economic Studies of Moldova (ASEM), vol. 9(2), pages 169-191, December.
    5. Petra Tschakert & David Schlosberg & Danielle Celermajer & Lauren Rickards & Christine Winter & Mathias Thaler & Makere Stewart‐Harawira & Blanche Verlie, 2021. "Multispecies justice: Climate‐just futures with, for and beyond humans," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    6. Andrea Duane & Marc Castellnou & Lluís Brotons, 2021. "Towards a comprehensive look at global drivers of novel extreme wildfire events," Climatic Change, Springer, vol. 165(3), pages 1-21, April.
    7. Víctor Resco de Dios & Yinan Yao & Àngel Cunill Camprubí & Matthias M. Boer, 2022. "Fire activity as measured by burned area reveals weak effects of ENSO in China," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    8. Sean Sloan & Luca Tacconi & Megan E. Cattau, 2021. "Fire prevention in managed landscapes: Recent success and challenges in Indonesia," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 26(7), pages 1-30, October.
    9. Yuan, Xin & Jiao, Liang & Che, Xichen & Wu, Jingjing & Zhu, Xuli & Li, Qian, 2024. "Study on the water-carbon coupling coordination function on the eastern edge of the Qinghai-Tibet plateau," Ecological Modelling, Elsevier, vol. 487(C).
    10. Mangani, Andrea, 2021. "When does print media address deforestation? A quantitative analysis of major newspapers from US, UK, and Australia," Forest Policy and Economics, Elsevier, vol. 130(C).
    11. Ernestina Rubio-Mozos & Fernando E. García-Muiña & Laura Fuentes-Moraleda, 2020. "Sustainable Strategic Management Model for Hotel Companies: A Multi-Stakeholder Proposal to “Walk the Talk” toward SDGs," Sustainability, MDPI, vol. 12(20), pages 1-25, October.
    12. Trevor H. Booth & Paul R. Muir, 2020. "Climate change impacts on Australia's eucalypt and coral species: Comparing and sharing knowledge across disciplines," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(5), September.
    13. Nadjla Bentekhici & Sid-Ahmed Bellal & Ahmed Zegrar, 2020. "Contribution of remote sensing and GIS to mapping the fire risk of Mediterranean forest case of the forest massif of Tlemcen (North-West Algeria)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(1), pages 811-831, October.
    14. Heather Welch & Matthew S. Savoca & Stephanie Brodie & Michael G. Jacox & Barbara A. Muhling & Thomas A. Clay & Megan A. Cimino & Scott R. Benson & Barbara A. Block & Melinda G. Conners & Daniel P. Co, 2023. "Impacts of marine heatwaves on top predator distributions are variable but predictable," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    15. Stephen Fox & Yusuf Mubarak & Abdurasak Adam, 2020. "Ecological Analyses of Social Sustainability for International Production with Fixed and Moveable Technologies," Sustainability, MDPI, vol. 12(20), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:nathaz:v:120:y:2024:i:12:d:10.1007_s11069-024-06622-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.