IDEAS home Printed from https://ideas.repec.org/a/gam/jgames/v8y2017i4p40-d112619.html
   My bibliography  Save this article

Vector Games with Potential Function

Author

Listed:
  • Lucia Pusillo

    (DIMA-Department of Mathematics, University of Genova, via Dodecaneso 35, 16146 Genova, Italy)

Abstract

The theory of non cooperative games with potential function was introduced by Monderer and Shapley in 1996. Such games have interesting properties, among which is the existence of equilibria in pure strategies. The paper by Monderer and Shapley has inspired many game theory researchers. In the present paper, many classes of multiobjective games with potential functions are studied. The notions of generalized, best-reply and Pareto potential games are introduced in a multicriteria setting. Some properties and Pareto equilibria are investigated.

Suggested Citation

  • Lucia Pusillo, 2017. "Vector Games with Potential Function," Games, MDPI, vol. 8(4), pages 1-11, September.
  • Handle: RePEc:gam:jgames:v:8:y:2017:i:4:p:40-:d:112619
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-4336/8/4/40/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-4336/8/4/40/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Voorneveld, M., 1999. "Potential games and interactive decisions with multiple criteria," Other publications TiSEM 29d7b372-7a4e-4db7-b66c-f, Tilburg University, School of Economics and Management.
    2. Voorneveld, Mark, 2000. "Best-response potential games," Economics Letters, Elsevier, vol. 66(3), pages 289-295, March.
    3. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    4. Lina Mallozzi & Stef Tijs, 2008. "Conflict And Cooperation In Symmetric Potential Games," International Game Theory Review (IGTR), World Scientific Publishing Co. Pte. Ltd., vol. 10(03), pages 245-256.
    5. Peter Borm & Freek van Megen & Stef Tijs, 1999. "A perfectness concept for multicriteria games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 49(3), pages 401-412, July.
    6. Jacqueline Morgan, 2005. "Approximations and Well-Posedness in Multicriteria Games," Annals of Operations Research, Springer, vol. 137(1), pages 257-268, July.
    7. Simone Sagratella, 2017. "Algorithms for generalized potential games with mixed-integer variables," Computational Optimization and Applications, Springer, vol. 68(3), pages 689-717, December.
    8. Francisco Facchinei & Veronica Piccialli & Marco Sciandrone, 2011. "Decomposition algorithms for generalized potential games," Computational Optimization and Applications, Springer, vol. 50(2), pages 237-262, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vito Fragnelli & Lucia Pusillo, 2020. "Multiobjective Games for Detecting Abnormally Expressed Genes," Mathematics, MDPI, vol. 8(3), pages 1-12, March.
    2. Giovanni P. Crespi & Daishi Kuroiwa & Matteo Rocca, 2020. "Robust Nash equilibria in vector-valued games with uncertainty," Annals of Operations Research, Springer, vol. 289(2), pages 185-193, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kukushkin, Nikolai S., 2015. "Cournot tatonnement and potentials," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 117-127.
    2. Lina Mallozzi, 2013. "An application of optimization theory to the study of equilibria for games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 523-539, September.
    3. Olivier Tercieux & Mark Voorneveld, 2010. "The cutting power of preparation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 85-101, February.
    4. G. De Marco & J. Morgan, 2010. "Kalai-Smorodinsky Bargaining Solution Equilibria," Journal of Optimization Theory and Applications, Springer, vol. 145(3), pages 429-449, June.
    5. Kukushkin, Nikolai S., 2004. "Best response dynamics in finite games with additive aggregation," Games and Economic Behavior, Elsevier, vol. 48(1), pages 94-110, July.
    6. Giancarlo Bigi & Lorenzo Lampariello & Simone Sagratella & Valerio Giuseppe Sasso, 2023. "Approximate variational inequalities and equilibria," Computational Management Science, Springer, vol. 20(1), pages 1-16, December.
    7. Giuseppe De Marco & Jacqueline Morgan, 2009. "On Multicriteria Games with Uncountable Sets of Equilibria," CSEF Working Papers 242, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    8. Lampariello, Lorenzo & Neumann, Christoph & Ricci, Jacopo M. & Sagratella, Simone & Stein, Oliver, 2021. "Equilibrium selection for multi-portfolio optimization," European Journal of Operational Research, Elsevier, vol. 295(1), pages 363-373.
    9. Tercieux, O.R.C. & Voorneveld, M., 2005. "The Cutting Power of Preparation," Other publications TiSEM 75173341-627f-4eb2-91f1-0, Tilburg University, School of Economics and Management.
    10. Vasily V. Gusev, 2021. "Cooperative congestion games," HSE Working papers WP BRP 245/EC/2021, National Research University Higher School of Economics.
    11. Jiawang Nie & Xindong Tang & Lingling Xu, 2021. "The Gauss–Seidel method for generalized Nash equilibrium problems of polynomials," Computational Optimization and Applications, Springer, vol. 78(2), pages 529-557, March.
    12. Axel Dreves & Simone Sagratella, 2020. "Nonsingularity and Stationarity Results for Quasi-Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 711-743, June.
    13. Sagratella, Simone & Schmidt, Marcel & Sudermann-Merx, Nathan, 2020. "The noncooperative fixed charge transportation problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 373-382.
    14. Lorenzo Lampariello & Simone Sagratella, 2020. "Numerically tractable optimistic bilevel problems," Computational Optimization and Applications, Springer, vol. 76(2), pages 277-303, June.
    15. Abheek Ghosh & Paul W. Goldberg, 2023. "Best-Response Dynamics in Lottery Contests," Papers 2305.10881, arXiv.org.
    16. Renaud Bourlès & Yann Bramoullé & Eduardo Perez‐Richet, 2017. "Altruism in Networks," Econometrica, Econometric Society, vol. 85, pages 675-689, March.
    17. repec:ebl:ecbull:v:3:y:2007:i:19:p:1-8 is not listed on IDEAS
    18. Christian Ewerhart, 2020. "Ordinal potentials in smooth games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 70(4), pages 1069-1100, November.
    19. Tami Tamir, 2023. "Cost-sharing games in real-time scheduling systems," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(1), pages 273-301, March.
    20. Dominique Barth & Benjamin Cohen-Boulakia & Wilfried Ehounou, 2022. "Distributed Reinforcement Learning for the Management of a Smart Grid Interconnecting Independent Prosumers," Energies, MDPI, vol. 15(4), pages 1-19, February.
    21. Le Breton, Michel & Weber, Shlomo, 2009. "Existence of Pure Strategies Nash Equilibria in Social Interaction Games with Dyadic Externalities," CEPR Discussion Papers 7279, C.E.P.R. Discussion Papers.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jgames:v:8:y:2017:i:4:p:40-:d:112619. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.