IDEAS home Printed from https://ideas.repec.org/p/hig/wpaper/245-ec-2021.html
   My bibliography  Save this paper

Cooperative congestion games

Author

Listed:
  • Vasily V. Gusev

    (National Research University Higher School of Economics)

Abstract

This paper studies a model for cooperative congestion games. There is an array of cooperative games V and a player’s strategy is to choose a subset of the set V. The player gets a certain payoff from each chosen game. The paper demonstrates that if a payoff is the Shapley or the Banzhaf value, then the corresponding cooperative congestion game has a Nash equilibrium in pure strategies. The case is examined where each game in V has a coalition partition. The stability of the vector of coalition structures is determined, taking in to account the transitions of players with in a game and their migrations to other games. The potential function is defined for coalition partitions, and is used as a means of proving the existence of a stable vector of coalition structures for a certain class of cooperative game values.

Suggested Citation

  • Vasily V. Gusev, 2021. "Cooperative congestion games," HSE Working papers WP BRP 245/EC/2021, National Research University Higher School of Economics.
  • Handle: RePEc:hig:wpaper:245/ec/2021
    as

    Download full text from publisher

    File URL: https://wp.hse.ru/data/2021/04/23/1379019763/245EC2021.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holzman, Ron & Law-Yone, Nissan, 1997. "Strong Equilibrium in Congestion Games," Games and Economic Behavior, Elsevier, vol. 21(1-2), pages 85-101, October.
    2. Hart, Sergiu & Mas-Colell, Andreu, 1989. "Potential, Value, and Consistency," Econometrica, Econometric Society, vol. 57(3), pages 589-614, May.
    3. Voorneveld, Mark, 2000. "Best-response potential games," Economics Letters, Elsevier, vol. 66(3), pages 289-295, March.
    4. Milchtaich, Igal, 1996. "Congestion Games with Player-Specific Payoff Functions," Games and Economic Behavior, Elsevier, vol. 13(1), pages 111-124, March.
    5. Correa, José R. & Schulz, Andreas S. & Stier-Moses, Nicolás E., 2008. "A geometric approach to the price of anarchy in nonatomic congestion games," Games and Economic Behavior, Elsevier, vol. 64(2), pages 457-469, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kukushkin, Nikolai S., 2004. "Best response dynamics in finite games with additive aggregation," Games and Economic Behavior, Elsevier, vol. 48(1), pages 94-110, July.
    2. Lina Mallozzi, 2013. "An application of optimization theory to the study of equilibria for games: a survey," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(3), pages 523-539, September.
    3. Arnold, Tone & Wooders, Myrna, 2002. "Dynamic Club Formation with Coordination," Economic Research Papers 269414, University of Warwick - Department of Economics.
    4. Ryo Kawasaki & Hideo Konishi & Junki Yukawa, 2023. "Equilibria in bottleneck games," International Journal of Game Theory, Springer;Game Theory Society, vol. 52(3), pages 649-685, September.
    5. Milchtaich, Igal, 2009. "Weighted congestion games with separable preferences," Games and Economic Behavior, Elsevier, vol. 67(2), pages 750-757, November.
    6. Olivier Tercieux & Mark Voorneveld, 2010. "The cutting power of preparation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 71(1), pages 85-101, February.
    7. Le Breton, Michel & Shapoval, Alexander & Weber, Shlomo, 2021. "A game-theoretical model of the landscape theory," Journal of Mathematical Economics, Elsevier, vol. 92(C), pages 41-46.
    8. Kukushkin, Nikolai S., 2015. "Cournot tatonnement and potentials," Journal of Mathematical Economics, Elsevier, vol. 59(C), pages 117-127.
    9. Zhan Wang & Jinpeng Ma & Hongwei Zhang, 2023. "Object-based unawareness: Theory and applications," The Journal of Mechanism and Institution Design, Society for the Promotion of Mechanism and Institution Design, University of York, vol. 8(1), pages 1-55, December.
    10. Igal Milchtaich, 2015. "Network topology and equilibrium existence in weighted network congestion games," International Journal of Game Theory, Springer;Game Theory Society, vol. 44(3), pages 515-541, August.
    11. Kukushkin, Nikolai S., 2014. "Strong equilibrium in games with common and complementary local utilities," MPRA Paper 55499, University Library of Munich, Germany.
    12. Kukushkin, Nikolai S., 2014. "Rosenthal's potential and a discrete version of the Debreu--Gorman Theorem," MPRA Paper 54171, University Library of Munich, Germany.
    13. Fatima Khanchouche & Samir Sbabou & Hatem Smaoui & Ziad Abderrahmane, 2023. "Congestion Games with Player-Specific Payoff Functions: The Case of Two Resources, Computation and Algorithms. First version," Economics Working Paper Archive (University of Rennes & University of Caen) 2023-08, Center for Research in Economics and Management (CREM), University of Rennes, University of Caen and CNRS.
    14. Morris, Stephen & Ui, Takashi, 2005. "Generalized potentials and robust sets of equilibria," Journal of Economic Theory, Elsevier, vol. 124(1), pages 45-78, September.
    15. Krzysztof R. Apt & Bart Keijzer & Mona Rahn & Guido Schäfer & Sunil Simon, 2017. "Coordination games on graphs," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(3), pages 851-877, August.
    16. Tercieux, O.R.C. & Voorneveld, M., 2005. "The Cutting Power of Preparation," Other publications TiSEM 75173341-627f-4eb2-91f1-0, Tilburg University, School of Economics and Management.
    17. Tobias Harks & Max Klimm & Rolf Möhring, 2013. "Strong equilibria in games with the lexicographical improvement property," International Journal of Game Theory, Springer;Game Theory Society, vol. 42(2), pages 461-482, May.
    18. Nikolai Kukushkin, 2007. "Congestion games revisited," International Journal of Game Theory, Springer;Game Theory Society, vol. 36(1), pages 57-83, September.
    19. Sanjiv Kapoor & Junghwan Shin, 2020. "Price of Anarchy in Networks with Heterogeneous Latency Functions," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 755-773, May.
    20. Page Jr., Frank H. & Wooders, Myrna, 2010. "Club networks with multiple memberships and noncooperative stability," Games and Economic Behavior, Elsevier, vol. 70(1), pages 12-20, September.

    More about this item

    Keywords

    potential games; Nash stability; coalition structure; congestion games;
    All these keywords.

    JEL classification:

    • C60 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - General
    • C62 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Existence and Stability Conditions of Equilibrium
    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hig:wpaper:245/ec/2021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Shamil Abdulaev or Shamil Abdulaev (email available below). General contact details of provider: https://edirc.repec.org/data/hsecoru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.