IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v16y2024i12p433-d1526043.html
   My bibliography  Save this article

Integrating UAVs and RISs in Future Wireless Networks: A Review and Tutorial on IoTs and Vehicular Communications

Author

Listed:
  • Mohsen Eskandari

    (School of Electrical Engineering and Telecommunication, University of New South Wales, Sydney 2033, Australia)

  • Andrey V. Savkin

    (School of Electrical Engineering and Telecommunication, University of New South Wales, Sydney 2033, Australia)

Abstract

The rapid evolution of smart cities relies heavily on advancements in wireless communication systems and extensive IoT networks. This paper offers a comprehensive review of the critical role and future potential of integrating unmanned aerial vehicles (UAVs) and reconfigurable intelligent surfaces (RISs) to enhance Internet of Vehicles (IoV) systems within beyond-fifth-generation (B5G) and sixth-generation (6G) networks. We explore the combination of quasi-optical millimeter-wave (mmWave) signals with UAV-enabled, RIS-assisted networks and their applications in urban environments. This review covers essential areas such as channel modeling and position-aware beamforming in dynamic networks, including UAVs and IoVs. Moreover, we investigate UAV navigation and control, emphasizing the development of obstacle-free trajectory designs in dense urban areas while meeting kinodynamic and motion constraints. The emerging potential of RIS-equipped UAVs (RISeUAVs) is highlighted, along with their role in supporting IoVs and in mobile edge computing. Optimization techniques, including convex programming methods and machine learning, are explored to tackle complex challenges, with an emphasis on studying computational complexity and feasibility for real-time operations. Additionally, this review highlights the integrated localization and communication strategies to enhance UAV and autonomous ground vehicle operations. This tutorial-style overview offers insights into the technical challenges and innovative solutions of the next-generation wireless networks in smart cities, with a focus on vehicular communications. Finally, future research directions are outlined.

Suggested Citation

  • Mohsen Eskandari & Andrey V. Savkin, 2024. "Integrating UAVs and RISs in Future Wireless Networks: A Review and Tutorial on IoTs and Vehicular Communications," Future Internet, MDPI, vol. 16(12), pages 1-43, November.
  • Handle: RePEc:gam:jftint:v:16:y:2024:i:12:p:433-:d:1526043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/16/12/433/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/16/12/433/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Milad Mohammadyari & Mohsen Eskandari, 2024. "Stochastic Convex Cone Programming for Joint Optimal BESS Operation and Q-Placement in Net-Zero Microgrids," Energies, MDPI, vol. 17(17), pages 1-16, August.
    2. E. Weiszfeld & Frank Plastria, 2009. "On the point for which the sum of the distances to n given points is minimum," Annals of Operations Research, Springer, vol. 167(1), pages 7-41, March.
    3. Thi-Hao Nguyen & Van-Hung Le & Huu-Son Do & Trung-Hieu Te & Van-Nam Phan, 2024. "TQU-SLAM Benchmark Dataset for Comparative Study to Build Visual Odometry Based on Extracted Features from Feature Descriptors and Deep Learning," Future Internet, MDPI, vol. 16(5), pages 1-21, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    2. Frank Plastria & Tom Blockmans, 2015. "Multidimensional Theoretic Consensus Reachability: The Impact of Distance Selection and Issue Saliences," Group Decision and Negotiation, Springer, vol. 24(1), pages 1-44, January.
    3. Amir Beck & Shoham Sabach, 2015. "Weiszfeld’s Method: Old and New Results," Journal of Optimization Theory and Applications, Springer, vol. 164(1), pages 1-40, January.
    4. Nguyen Mau Nam & Nguyen Hoang & Nguyen Thai An, 2014. "Constructions of Solutions to Generalized Sylvester and Fermat–Torricelli Problems for Euclidean Balls," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 483-509, February.
    5. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    6. Simeon Reich & Truong Minh Tuyen, 2023. "The Generalized Fermat–Torricelli Problem in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 78-97, January.
    7. Zvi Drezner & Mozart B. C. Menezes, 2016. "The wisdom of voters: evaluating the Weber objective in the plane at the Condorcet solution," Annals of Operations Research, Springer, vol. 246(1), pages 205-226, November.
    8. Dürre, Alexander & Vogel, Daniel & Tyler, David E., 2014. "The spatial sign covariance matrix with unknown location," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 107-117.
    9. Carrizosa, Emilio & Ramírez-Ayerbe, Jasone & Romero Morales, Dolores, 2024. "Mathematical optimization modelling for group counterfactual explanations," European Journal of Operational Research, Elsevier, vol. 319(2), pages 399-412.
    10. Plastria, Frank, 2016. "How bad can the centroid be?," European Journal of Operational Research, Elsevier, vol. 252(1), pages 98-102.
    11. Zvi Drezner & Carlton Scott, 2013. "Location of a distribution center for a perishable product," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(3), pages 301-314, December.
    12. Vinué, Guillermo, 2017. "Anthropometry: An R Package for Analysis of Anthropometric Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 77(i06).
    13. Frank Plastria, 2016. "Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams," Annals of Operations Research, Springer, vol. 246(1), pages 227-251, November.
    14. M. Akyüz & İ. Altınel & Temel Öncan, 2014. "Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 222(1), pages 45-71, November.
    15. Boris Mordukhovich & Nguyen Mau Nam, 2011. "Applications of Variational Analysis to a Generalized Fermat-Torricelli Problem," Journal of Optimization Theory and Applications, Springer, vol. 148(3), pages 431-454, March.
    16. Tammy Drezner & Zvi Drezner, 2016. "Sequential location of two facilities: comparing random to optimal location of the first facility," Annals of Operations Research, Springer, vol. 246(1), pages 5-18, November.
    17. Frank Plastria & Mohamed Elosmani, 2013. "Continuous location of an assembly station," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 323-340, July.
    18. Rodríguez-Chía, Antonio M. & Espejo, Inmaculada & Drezner, Zvi, 2010. "On solving the planar k-centrum problem with Euclidean distances," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1169-1186, December.
    19. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.
    20. F. Plastria, 2014. "Improved fixed point optimality conditions for mixed norms minisum location," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 170-184, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:16:y:2024:i:12:p:433-:d:1526043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.