IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v222y2014i1p45-7110.1007-s10479-012-1221-3.html
   My bibliography  Save this article

Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem

Author

Listed:
  • M. Akyüz
  • İ. Altınel
  • Temel Öncan

Abstract

Given the locations of J customers, their demands and I capacitated facilities, the Capacitated Multi-facility Weber Problem (CMWP) is concerned with locating I facilities in the plane to satisfy the demand of J customers with the minimum total transportation cost which is proportional to the distance between them. We propose two types of branch and bound algorithms for the ℓ r distance CMWP with 1≤r>∞. One of them is an allocation space based branch and bound algorithm for which a new branching variable selection strategy and new lower bounding procedures have been proposed. The other one is new and partitions the location space. Based on extensive computational experiments we can say that the proposed algorithms are promising and perform better than the existing ones. Copyright Springer Science+Business Media, LLC 2014

Suggested Citation

  • M. Akyüz & İ. Altınel & Temel Öncan, 2014. "Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 222(1), pages 45-71, November.
  • Handle: RePEc:spr:annopr:v:222:y:2014:i:1:p:45-71:10.1007/s10479-012-1221-3
    DOI: 10.1007/s10479-012-1221-3
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10479-012-1221-3
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10479-012-1221-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N Aras & M Orbay & I K Altinel, 2008. "Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 64-79, January.
    2. J.-F. Thisse & J. E. Ward & R. E. Wendell, 1984. "Some Properties of Location Problems with Block and Round Norms," Operations Research, INFORMS, vol. 32(6), pages 1309-1327, December.
    3. Jack Brimberg & Robert F. Love, 1993. "Global Convergence of a Generalized Iterative Procedure for the Minisum Location Problem with lp Distances," Operations Research, INFORMS, vol. 41(6), pages 1153-1163, December.
    4. Hanif D. Sherali & Intesar Al-Loughani & Shivaram Subramanian, 2002. "Global Optimization Procedures for the Capacitated Euclidean and l p Distance Multifacility Location-Allocation Problems," Operations Research, INFORMS, vol. 50(3), pages 433-448, June.
    5. P. Hansen & J. Perreur & J.-F. Thisse, 1980. "Technical Note—Location Theory, Dominance, and Convexity: Some Further Results," Operations Research, INFORMS, vol. 28(5), pages 1241-1250, October.
    6. Necati Aras & İ. Kuban Altınel & Metin Orbay, 2007. "New heuristic methods for the capacitated multi‐facility Weber problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 21-32, February.
    7. E. Weiszfeld & Frank Plastria, 2009. "On the point for which the sum of the distances to n given points is minimum," Annals of Operations Research, Springer, vol. 167(1), pages 7-41, March.
    8. Leon Cooper, 1972. "The Transportation-Location Problem," Operations Research, INFORMS, vol. 20(1), pages 94-108, February.
    9. James E. Ward & Richard E. Wendell, 1985. "Using Block Norms for Location Modeling," Operations Research, INFORMS, vol. 33(5), pages 1074-1090, October.
    10. Zvi Drezner & Atsuo Suzuki, 2004. "The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems," Operations Research, INFORMS, vol. 52(1), pages 128-135, February.
    11. Richard E. Wendell & Arthur P. Hurter, 1973. "Location Theory, Dominance, and Convexity," Operations Research, INFORMS, vol. 21(1), pages 314-320, February.
    12. Zainuddin, Z.M. & Salhi, S., 2007. "A perturbation-based heuristic for the capacitated multisource Weber problem," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1194-1207, June.
    13. Hanif D. Sherali & Frederick L. Nordai, 1988. "NP-Hard, Capacitated, Balanced p -Median Problems on a Chain Graph with a Continuum of Link Demands," Mathematics of Operations Research, INFORMS, vol. 13(1), pages 32-49, February.
    14. Zvi Drezner & George O. Wesolowsky & Tammy Drezner, 2004. "The gradual covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 841-855, September.
    15. Plastria, Frank, 1992. "GBSSS: The generalized big square small square method for planar single-facility location," European Journal of Operational Research, Elsevier, vol. 62(2), pages 163-174, October.
    16. Drezner, Zvi & Drezner, Tammy & Wesolowsky, George O., 2009. "Location with acceleration-deceleration distance," European Journal of Operational Research, Elsevier, vol. 198(1), pages 157-164, October.
    17. Hanif D. Sherali & Cihan H. Tuncbilek, 1992. "A squared‐euclidean distance location‐allocation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(4), pages 447-469, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    2. Necati Aras & İ. Kuban Altınel & Metin Orbay, 2007. "New heuristic methods for the capacitated multi‐facility Weber problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 54(1), pages 21-32, February.
    3. N Aras & M Orbay & I K Altinel, 2008. "Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 64-79, January.
    4. Chandra Ade Irawan & Martino Luis & Said Salhi & Arif Imran, 2019. "The incorporation of fixed cost and multilevel capacities into the discrete and continuous single source capacitated facility location problem," Annals of Operations Research, Springer, vol. 275(2), pages 367-392, April.
    5. Cristiana L. Lara & Francisco Trespalacios & Ignacio E. Grossmann, 2018. "Global optimization algorithm for capacitated multi-facility continuous location-allocation problems," Journal of Global Optimization, Springer, vol. 71(4), pages 871-889, August.
    6. Frank Plastria & Mohamed Elosmani, 2013. "Continuous location of an assembly station," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 323-340, July.
    7. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2021. "Directional approach to gradual cover: the continuous case," Computational Management Science, Springer, vol. 18(1), pages 25-47, January.
    8. Zvi Drezner & Mozart B. C. Menezes, 2016. "The wisdom of voters: evaluating the Weber objective in the plane at the Condorcet solution," Annals of Operations Research, Springer, vol. 246(1), pages 205-226, November.
    9. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    10. E. Carrizosa & J. B. G. Frenk, 1998. "Dominating Sets for Convex Functions with Some Applications," Journal of Optimization Theory and Applications, Springer, vol. 96(2), pages 281-295, February.
    11. Dongyan Chen & Chan He & Senlin Wu, 2016. "Single facility collection depots location problem with random weights," Operational Research, Springer, vol. 16(2), pages 287-299, July.
    12. Marianov, Vladimir & Eiselt, H.A., 2024. "Fifty Years of Location Theory - A Selective Review," European Journal of Operational Research, Elsevier, vol. 318(3), pages 701-718.
    13. Hanif D. Sherali & Intesar Al-Loughani & Shivaram Subramanian, 2002. "Global Optimization Procedures for the Capacitated Euclidean and l p Distance Multifacility Location-Allocation Problems," Operations Research, INFORMS, vol. 50(3), pages 433-448, June.
    14. Zvi Drezner & Jack Brimberg & Nenad Mladenović & Said Salhi, 2016. "New local searches for solving the multi-source Weber problem," Annals of Operations Research, Springer, vol. 246(1), pages 181-203, November.
    15. Zvi Drezner & Carlton Scott, 2013. "Location of a distribution center for a perishable product," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(3), pages 301-314, December.
    16. AltInel, I. Kuban & Durmaz, Engin & Aras, Necati & ÖzkIsacIk, Kerem Can, 2009. "A location-allocation heuristic for the capacitated multi-facility Weber problem with probabilistic customer locations," European Journal of Operational Research, Elsevier, vol. 198(3), pages 790-799, November.
    17. Frank Plastria, 2016. "Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams," Annals of Operations Research, Springer, vol. 246(1), pages 227-251, November.
    18. Tammy Drezner & Zvi Drezner, 2016. "Sequential location of two facilities: comparing random to optimal location of the first facility," Annals of Operations Research, Springer, vol. 246(1), pages 5-18, November.
    19. B. Pelegrin & F. R. Fernandez, 1988. "Determination of efficient points in multiple‐objective location problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 697-705, December.
    20. Mark-Christoph Körner & Jack Brimberg & Henrik Juel & Anita Schöbel, 2011. "Geometric fit of a point set by generalized circles," Journal of Global Optimization, Springer, vol. 51(1), pages 115-132, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:222:y:2014:i:1:p:45-71:10.1007/s10479-012-1221-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.