IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v21y2013i2p323-340.html
   My bibliography  Save this article

Continuous location of an assembly station

Author

Listed:
  • Frank Plastria
  • Mohamed Elosmani

Abstract

Demand existing at client points in the plane for several products should be met. Products have to be assembled from different components obtainable at given prices at various sources with known production capacities. The optimal design of the resulting supply chain must be determined, including the location of a central assembly station in the plane, so as to minimize the total operational cost comprising buying and transport of components as well as transport of final products. This problem leads to a difficult nonlinear and non-convex optimization problem for which a locally convergent algorithm is proposed. Some computational results are presented. Copyright Sociedad de Estadística e Investigación Operativa 2013

Suggested Citation

  • Frank Plastria & Mohamed Elosmani, 2013. "Continuous location of an assembly station," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 323-340, July.
  • Handle: RePEc:spr:topjnl:v:21:y:2013:i:2:p:323-340
    DOI: 10.1007/s11750-011-0185-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11750-011-0185-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11750-011-0185-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zvi Drezner & Atsuo Suzuki, 2004. "The Big Triangle Small Triangle Method for the Solution of Nonconvex Facility Location Problems," Operations Research, INFORMS, vol. 52(1), pages 128-135, February.
    2. Frank Plastria, 2011. "The Weiszfeld Algorithm: Proof, Amendments, and Extensions," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Foundations of Location Analysis, chapter 0, pages 357-389, Springer.
    3. Martin Gugat & Barbara Pfeiffer, 2007. "Weber problems with mixed distances and regional demand," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 66(3), pages 419-449, December.
    4. Drezner, Zvi & Nickel, Stefan, 2009. "Solving the ordered one-median problem in the plane," European Journal of Operational Research, Elsevier, vol. 195(1), pages 46-61, May.
    5. Frank Plastria & Mohamed Elosmani, 2008. "On the convergence of the Weiszfeld algorithm for continuous single facility location–allocation problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 16(2), pages 388-406, December.
    6. Carrizosa, Emilio & Rodriguez-Chia, Antonio M., 1997. "Weber problems with alternative transportation systems," European Journal of Operational Research, Elsevier, vol. 97(1), pages 87-93, February.
    7. E. Weiszfeld & Frank Plastria, 2009. "On the point for which the sum of the distances to n given points is minimum," Annals of Operations Research, Springer, vol. 167(1), pages 7-41, March.
    8. Plastria, Frank, 1992. "GBSSS: The generalized big square small square method for planar single-facility location," European Journal of Operational Research, Elsevier, vol. 62(2), pages 163-174, October.
    9. Drezner, Zvi & Drezner, Tammy & Wesolowsky, George O., 2009. "Location with acceleration-deceleration distance," European Journal of Operational Research, Elsevier, vol. 198(1), pages 157-164, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Frank Plastria, 2016. "Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams," Annals of Operations Research, Springer, vol. 246(1), pages 227-251, November.
    2. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Plastria, 2016. "Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams," Annals of Operations Research, Springer, vol. 246(1), pages 227-251, November.
    2. M. Akyüz & İ. Altınel & Temel Öncan, 2014. "Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 222(1), pages 45-71, November.
    3. Schöbel, Anita & Scholz, Daniel, 2014. "A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables," European Journal of Operational Research, Elsevier, vol. 232(2), pages 266-275.
    4. Drezner, Tammy & Drezner, Zvi & Hulliger, Beat, 2014. "The Quintile Share Ratio in location analysis," European Journal of Operational Research, Elsevier, vol. 238(1), pages 166-174.
    5. Marianov, Vladimir & Eiselt, H.A., 2024. "Fifty Years of Location Theory - A Selective Review," European Journal of Operational Research, Elsevier, vol. 318(3), pages 701-718.
    6. M. Hakan Akyüz & Temel Öncan & İ. Kuban Altınel, 2019. "Branch and bound algorithms for solving the multi-commodity capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 279(1), pages 1-42, August.
    7. Tammy Drezner & Zvi Drezner, 2016. "Sequential location of two facilities: comparing random to optimal location of the first facility," Annals of Operations Research, Springer, vol. 246(1), pages 5-18, November.
    8. Rodríguez-Chía, Antonio M. & Espejo, Inmaculada & Drezner, Zvi, 2010. "On solving the planar k-centrum problem with Euclidean distances," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1169-1186, December.
    9. Rafael Blanquero & Emilio Carrizosa & Amaya Nogales-Gómez & Frank Plastria, 2014. "Single-facility huff location problems on networks," Annals of Operations Research, Springer, vol. 222(1), pages 175-195, November.
    10. Zvi Drezner & Said Salhi, 2017. "Incorporating neighborhood reduction for the solution of the planar p-median problem," Annals of Operations Research, Springer, vol. 258(2), pages 639-654, November.
    11. Zvi Drezner & Mozart B. C. Menezes, 2016. "The wisdom of voters: evaluating the Weber objective in the plane at the Condorcet solution," Annals of Operations Research, Springer, vol. 246(1), pages 205-226, November.
    12. Daniel Scholz, 2013. "Geometric branch-and-bound methods for constrained global optimization problems," Journal of Global Optimization, Springer, vol. 57(3), pages 771-782, November.
    13. Zvi Drezner & Vladimir Marianov & George O. Wesolowsky, 2016. "Maximizing the minimum cover probability by emergency facilities," Annals of Operations Research, Springer, vol. 246(1), pages 349-362, November.
    14. Plastria, Frank, 2016. "How bad can the centroid be?," European Journal of Operational Research, Elsevier, vol. 252(1), pages 98-102.
    15. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.
    16. Zvi Drezner & George O. Wesolowsky & Tammy Drezner, 2004. "The gradual covering problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(6), pages 841-855, September.
    17. Fernandez, Jose & Pelegri'n, Blas & Plastria, Frank & Toth, Boglarka, 2007. "Solving a Huff-like competitive location and design model for profit maximization in the plane," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1274-1287, June.
    18. Frank Plastria, 2009. "Asymmetric distances, semidirected networks and majority in Fermat–Weber problems," Annals of Operations Research, Springer, vol. 167(1), pages 121-155, March.
    19. Chan He & Yafang Lv & Horst Martini & Senlin Wu, 2023. "A Branch-and-Bound Approach for Estimating Covering Functionals of Convex Bodies," Journal of Optimization Theory and Applications, Springer, vol. 196(3), pages 1036-1055, March.
    20. Dongyan Chen & Chan He & Senlin Wu, 2016. "Single facility collection depots location problem with random weights," Operational Research, Springer, vol. 16(2), pages 287-299, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:21:y:2013:i:2:p:323-340. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.