IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v252y2016i1p98-102.html
   My bibliography  Save this article

How bad can the centroid be?

Author

Listed:
  • Plastria, Frank

Abstract

In this note we first show that the centroid (or centre of gravity) gives in value a (σ+1)-approximation to any continuous single facility minisum location problem for any gauge with asymmetry measure σ, and thus a 2-approximate solution for any norm.

Suggested Citation

  • Plastria, Frank, 2016. "How bad can the centroid be?," European Journal of Operational Research, Elsevier, vol. 252(1), pages 98-102.
  • Handle: RePEc:eee:ejores:v:252:y:2016:i:1:p:98-102
    DOI: 10.1016/j.ejor.2016.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716000060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Weiszfeld & Frank Plastria, 2009. "On the point for which the sum of the distances to n given points is minimum," Annals of Operations Research, Springer, vol. 167(1), pages 7-41, March.
    2. Roger C. Vergin & Jack D. Rogers, 1967. "An Algorithm and Computational Procedure for Locating Economic Facilities," Management Science, INFORMS, vol. 13(6), pages 240-254, February.
    3. Pelegrin, Blas & Michelot, Christian & Plastria, Frank, 1985. "On the uniqueness of optimal solutions in continuous location theory," European Journal of Operational Research, Elsevier, vol. 20(3), pages 327-331, June.
    4. Frank Plastria, 2009. "Asymmetric distances, semidirected networks and majority in Fermat–Weber problems," Annals of Operations Research, Springer, vol. 167(1), pages 121-155, March.
    5. Frank Plastria, 2011. "The Weiszfeld Algorithm: Proof, Amendments, and Extensions," International Series in Operations Research & Management Science, in: H. A. Eiselt & Vladimir Marianov (ed.), Foundations of Location Analysis, chapter 0, pages 357-389, Springer.
    6. Richard E. Wendell & Arthur P. Hurter, 1973. "Location Theory, Dominance, and Convexity," Operations Research, INFORMS, vol. 21(1), pages 314-320, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Murray, Alan T., 2021. "Contemporary optimization application through geographic information systems," Omega, Elsevier, vol. 99(C).
    2. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Plastria, 2021. "Using the power of ideal solutions: simple proofs of some old and new results in location theory," 4OR, Springer, vol. 19(3), pages 449-467, September.
    2. Frank Plastria & Tom Blockmans, 2015. "Multidimensional Theoretic Consensus Reachability: The Impact of Distance Selection and Issue Saliences," Group Decision and Negotiation, Springer, vol. 24(1), pages 1-44, January.
    3. Zvi Drezner & Mozart B. C. Menezes, 2016. "The wisdom of voters: evaluating the Weber objective in the plane at the Condorcet solution," Annals of Operations Research, Springer, vol. 246(1), pages 205-226, November.
    4. M. Akyüz & İ. Altınel & Temel Öncan, 2014. "Location and allocation based branch and bound algorithms for the capacitated multi-facility Weber problem," Annals of Operations Research, Springer, vol. 222(1), pages 45-71, November.
    5. Stefan Nickel & Justo Puerto & Antonio M. Rodriguez-Chia, 2003. "An Approach to Location Models Involving Sets as Existing Facilities," Mathematics of Operations Research, INFORMS, vol. 28(4), pages 693-715, November.
    6. Zvi Drezner & Carlton Scott, 2013. "Location of a distribution center for a perishable product," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 78(3), pages 301-314, December.
    7. Frank Plastria, 2016. "Up- and downgrading the euclidean 1-median problem and knapsack Voronoi diagrams," Annals of Operations Research, Springer, vol. 246(1), pages 227-251, November.
    8. Frank Plastria & Mohamed Elosmani, 2013. "Continuous location of an assembly station," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(2), pages 323-340, July.
    9. B. Pelegrin & F. R. Fernandez, 1988. "Determination of efficient points in multiple‐objective location problems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 35(6), pages 697-705, December.
    10. Murray, Alan T. & Church, Richard L. & Feng, Xin, 2020. "Single facility siting involving allocation decisions," European Journal of Operational Research, Elsevier, vol. 284(3), pages 834-846.
    11. F. Plastria, 2014. "Improved fixed point optimality conditions for mixed norms minisum location," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(1), pages 170-184, April.
    12. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    13. Jiwon Baik & Alan T. Murray, 2022. "Locating a facility to simultaneously address access and coverage goals," Papers in Regional Science, Wiley Blackwell, vol. 101(5), pages 1199-1217, October.
    14. Nguyen Mau Nam & Nguyen Hoang & Nguyen Thai An, 2014. "Constructions of Solutions to Generalized Sylvester and Fermat–Torricelli Problems for Euclidean Balls," Journal of Optimization Theory and Applications, Springer, vol. 160(2), pages 483-509, February.
    15. David Degras, 2021. "Sparse group fused lasso for model segmentation: a hybrid approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 625-671, September.
    16. Simeon Reich & Truong Minh Tuyen, 2023. "The Generalized Fermat–Torricelli Problem in Hilbert Spaces," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 78-97, January.
    17. N Aras & M Orbay & I K Altinel, 2008. "Efficient heuristics for the rectilinear distance capacitated multi-facility Weber problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(1), pages 64-79, January.
    18. Canos, M. J. & Ivorra, C. & Liern, V., 1999. "An exact algorithm for the fuzzy p-median problem," European Journal of Operational Research, Elsevier, vol. 116(1), pages 80-86, July.
    19. Tammy Drezner & Zvi Drezner & Pawel Kalczynski, 2020. "Gradual cover competitive facility location," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 42(2), pages 333-354, June.
    20. Zvi Drezner & George Wesolowsky, 2014. "Covering Part of a Planar Network," Networks and Spatial Economics, Springer, vol. 14(3), pages 629-646, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:252:y:2016:i:1:p:98-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.