Knowledge-Graph-Based Drug Repositioning against COVID-19 by Graph Convolutional Network with Attention Mechanism
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yunan Luo & Xinbin Zhao & Jingtian Zhou & Jinglin Yang & Yanqing Zhang & Wenhua Kuang & Jian Peng & Ligong Chen & Jianyang Zeng, 2017. "A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
- Yong Liu & Min Wu & Chunyan Miao & Peilin Zhao & Xiao-Li Li, 2016. "Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-26, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Francesco Piccialli & Vincenzo Schiano Cola & Fabio Giampaolo & Salvatore Cuomo, 2021. "The Role of Artificial Intelligence in Fighting the COVID-19 Pandemic," Information Systems Frontiers, Springer, vol. 23(6), pages 1467-1497, December.
- Jie Yu & Yaliu Li & Chenle Pan & Junwei Wang, 2021. "A Classification Method for Academic Resources Based on a Graph Attention Network," Future Internet, MDPI, vol. 13(3), pages 1-16, March.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Qing Ye & Chang-Yu Hsieh & Ziyi Yang & Yu Kang & Jiming Chen & Dongsheng Cao & Shibo He & Tingjun Hou, 2021. "A unified drug–target interaction prediction framework based on knowledge graph and recommendation system," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Anna Cichonska & Balaguru Ravikumar & Elina Parri & Sanna Timonen & Tapio Pahikkala & Antti Airola & Krister Wennerberg & Juho Rousu & Tero Aittokallio, 2017. "Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-28, August.
- Benoit Playe & Chloé-Agathe Azencott & Véronique Stoven, 2018. "Efficient multi-task chemogenomics for drug specificity prediction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-34, October.
- Hansaim Lim & Aleksandar Poleksic & Yuan Yao & Hanghang Tong & Di He & Luke Zhuang & Patrick Meng & Lei Xie, 2016. "Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-26, October.
- Yuxuan Wang & Ying Xia & Junchi Yan & Ye Yuan & Hong-Bin Shen & Xiaoyong Pan, 2023. "ZeroBind: a protein-specific zero-shot predictor with subgraph matching for drug-target interactions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
- Wen Zhang & Xiang Yue & Guifeng Tang & Wenjian Wu & Feng Huang & Xining Zhang, 2018. "SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-21, December.
- Jiahua Rao & Jiancong Xie & Qianmu Yuan & Deqin Liu & Zhen Wang & Yutong Lu & Shuangjia Zheng & Yuedong Yang, 2024. "A variational expectation-maximization framework for balanced multi-scale learning of protein and drug interactions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
- Xiaomin Liang & Daifeng Li & Min Song & Andrew Madden & Ying Ding & Yi Bu, 2019. "Predicting biomedical relationships using the knowledge and graph embedding cascade model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
More about this item
Keywords
COVID-19; drug–disease interaction prediction; knowledge graph; graph convolutional network;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:13:y:2021:i:1:p:13-:d:476018. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.