IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1005135.html
   My bibliography  Save this article

Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing

Author

Listed:
  • Hansaim Lim
  • Aleksandar Poleksic
  • Yuan Yao
  • Hanghang Tong
  • Di He
  • Luke Zhuang
  • Patrick Meng
  • Lei Xie

Abstract

Target-based screening is one of the major approaches in drug discovery. Besides the intended target, unexpected drug off-target interactions often occur, and many of them have not been recognized and characterized. The off-target interactions can be responsible for either therapeutic or side effects. Thus, identifying the genome-wide off-targets of lead compounds or existing drugs will be critical for designing effective and safe drugs, and providing new opportunities for drug repurposing. Although many computational methods have been developed to predict drug-target interactions, they are either less accurate than the one that we are proposing here or computationally too intensive, thereby limiting their capability for large-scale off-target identification. In addition, the performances of most machine learning based algorithms have been mainly evaluated to predict off-target interactions in the same gene family for hundreds of chemicals. It is not clear how these algorithms perform in terms of detecting off-targets across gene families on a proteome scale. Here, we are presenting a fast and accurate off-target prediction method, REMAP, which is based on a dual regularized one-class collaborative filtering algorithm, to explore continuous chemical space, protein space, and their interactome on a large scale. When tested in a reliable, extensive, and cross-gene family benchmark, REMAP outperforms the state-of-the-art methods. Furthermore, REMAP is highly scalable. It can screen a dataset of 200 thousands chemicals against 20 thousands proteins within 2 hours. Using the reconstructed genome-wide target profile as the fingerprint of a chemical compound, we predicted that seven FDA-approved drugs can be repurposed as novel anti-cancer therapies. The anti-cancer activity of six of them is supported by experimental evidences. Thus, REMAP is a valuable addition to the existing in silico toolbox for drug target identification, drug repurposing, phenotypic screening, and side effect prediction. The software and benchmark are available at https://github.com/hansaimlim/REMAP.Author Summary: High-throughput techniques have generated vast amounts of diverse omics and phenotypic data. However, these sets of data have not yet been fully explored to improve the effectiveness and efficiency of drug discovery, a process which has traditionally adopted a one-drug-one-gene paradigm. Consequently, the cost of bringing a drug to market is astounding and the failure rate is daunting. The failure of the target-based drug discovery is in large part due to the fact that a drug rarely interacts only with its intended receptor, but also generally binds to other receptors. To rationally design potent and safe therapeutics, we need to identify all the possible cellular proteins interacting with a drug in an organism. Existing experimental techniques are not sufficient to address this problem, and will benefit from computational modeling. However, it is a daunting task to reliably screen millions of chemicals against hundreds of thousands of proteins. Here, we introduce a fast and accurate method REMAP for large-scale predictions of drug-target interactions. REMAP outperforms state-of-the-art algorithms in terms of both speed and accuracy, and has been successfully applied to drug repurposing. Thus, REMAP may have broad applications in drug discovery.

Suggested Citation

  • Hansaim Lim & Aleksandar Poleksic & Yuan Yao & Hanghang Tong & Di He & Luke Zhuang & Patrick Meng & Lei Xie, 2016. "Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-26, October.
  • Handle: RePEc:plo:pcbi00:1005135
    DOI: 10.1371/journal.pcbi.1005135
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005135
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1005135&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1005135?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yong Liu & Min Wu & Chunyan Miao & Peilin Zhao & Xiao-Li Li, 2016. "Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-26, February.
    2. Declan Butler & Ewen Callaway, 2016. "Scientists in the dark after French clinical trial proves fatal," Nature, Nature, vol. 529(7586), pages 263-264, January.
    3. Twan van Laarhoven & Elena Marchiori, 2013. "Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-6, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anna Cichonska & Balaguru Ravikumar & Elina Parri & Sanna Timonen & Tapio Pahikkala & Antti Airola & Krister Wennerberg & Juho Rousu & Tero Aittokallio, 2017. "Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benoit Playe & Chloé-Agathe Azencott & Véronique Stoven, 2018. "Efficient multi-task chemogenomics for drug specificity prediction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-34, October.
    2. Anna Cichonska & Balaguru Ravikumar & Elina Parri & Sanna Timonen & Tapio Pahikkala & Antti Airola & Krister Wennerberg & Juho Rousu & Tero Aittokallio, 2017. "Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-28, August.
    3. Mingxuan Che & Kui Yao & Chao Che & Zhangwei Cao & Fanchen Kong, 2021. "Knowledge-Graph-Based Drug Repositioning against COVID-19 by Graph Convolutional Network with Attention Mechanism," Future Internet, MDPI, vol. 13(1), pages 1-10, January.
    4. Qing Ye & Chang-Yu Hsieh & Ziyi Yang & Yu Kang & Jiming Chen & Dongsheng Cao & Shibo He & Tingjun Hou, 2021. "A unified drug–target interaction prediction framework based on knowledge graph and recommendation system," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    5. Cheng Yan & Jianxin Wang & Wei Lan & Fang-Xiang Wu & Yi Pan, 2017. "SDTRLS: Predicting Drug-Target Interactions for Complex Diseases Based on Chemical Substructures," Complexity, Hindawi, vol. 2017, pages 1-10, December.
    6. Chao Huang & Yang Yang & Xuetong Chen & Chao Wang & Yan Li & Chunli Zheng & Yonghua Wang, 2017. "Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-20, September.
    7. Yong Liu & Min Wu & Chunyan Miao & Peilin Zhao & Xiao-Li Li, 2016. "Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-26, February.
    8. Krisztian Buza & Ladislav Peška & Júlia Koller, 2020. "Modified linear regression predicts drug-target interactions accurately," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-18, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1005135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.