IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48801-4.html
   My bibliography  Save this article

A variational expectation-maximization framework for balanced multi-scale learning of protein and drug interactions

Author

Listed:
  • Jiahua Rao

    (Sun Yat-sen University)

  • Jiancong Xie

    (Sun Yat-sen University)

  • Qianmu Yuan

    (Sun Yat-sen University)

  • Deqin Liu

    (Sun Yat-sen University)

  • Zhen Wang

    (Sun Yat-sen University)

  • Yutong Lu

    (Sun Yat-sen University)

  • Shuangjia Zheng

    (Shanghai Jiao Tong University)

  • Yuedong Yang

    (Sun Yat-sen University
    Sun Yat-sen University
    Sun Yat-sen University)

Abstract

Protein functions are characterized by interactions with proteins, drugs, and other biomolecules. Understanding these interactions is essential for deciphering the molecular mechanisms underlying biological processes and developing new therapeutic strategies. Current computational methods mostly predict interactions based on either molecular network or structural information, without integrating them within a unified multi-scale framework. While a few multi-view learning methods are devoted to fusing the multi-scale information, these methods tend to rely intensively on a single scale and under-fitting the others, likely attributed to the imbalanced nature and inherent greediness of multi-scale learning. To alleviate the optimization imbalance, we present MUSE, a multi-scale representation learning framework based on a variant expectation maximization to optimize different scales in an alternating procedure over multiple iterations. This strategy efficiently fuses multi-scale information between atomic structure and molecular network scale through mutual supervision and iterative optimization. MUSE outperforms the current state-of-the-art models not only in molecular interaction (protein-protein, drug-protein, and drug-drug) tasks but also in protein interface prediction at the atomic structure scale. More importantly, the multi-scale learning framework shows potential for extension to other scales of computational drug discovery.

Suggested Citation

  • Jiahua Rao & Jiancong Xie & Qianmu Yuan & Deqin Liu & Zhen Wang & Yutong Lu & Shuangjia Zheng & Yuedong Yang, 2024. "A variational expectation-maximization framework for balanced multi-scale learning of protein and drug interactions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48801-4
    DOI: 10.1038/s41467-024-48801-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48801-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48801-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zhiye Guo & Jian Liu & Jeffrey Skolnick & Jianlin Cheng, 2022. "Prediction of inter-chain distance maps of protein complexes with 2D attention-based deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Yunan Luo & Xinbin Zhao & Jingtian Zhou & Jinglin Yang & Yanqing Zhang & Wenhua Kuang & Jian Peng & Ligong Chen & Jianyang Zeng, 2017. "A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    3. Feixiong Cheng & István A. Kovács & Albert-László Barabási, 2019. "Network-based prediction of drug combinations," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Qiangfeng Cliff Zhang & Donald Petrey & Lei Deng & Li Qiang & Yu Shi & Chan Aye Thu & Brygida Bisikirska & Celine Lefebvre & Domenico Accili & Tony Hunter & Tom Maniatis & Andrea Califano & Barry Honi, 2012. "Structure-based prediction of protein–protein interactions on a genome-wide scale," Nature, Nature, vol. 490(7421), pages 556-560, October.
    5. Feixiong Cheng & István A. Kovács & Albert-László Barabási, 2019. "Publisher Correction: Network-based prediction of drug combinations," Nature Communications, Nature, vol. 10(1), pages 1-1, December.
    6. Lucien F. Krapp & Luciano A. Abriata & Fabio Cortés Rodriguez & Matteo Dal Peraro, 2023. "PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    7. Ziqi Gao & Chenran Jiang & Jiawen Zhang & Xiaosen Jiang & Lanqing Li & Peilin Zhao & Huanming Yang & Yong Huang & Jia Li, 2023. "Hierarchical graph learning for protein–protein interaction," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sepideh Sadegh & James Skelton & Elisa Anastasi & Andreas Maier & Klaudia Adamowicz & Anna Möller & Nils M. Kriege & Jaanika Kronberg & Toomas Haller & Tim Kacprowski & Anil Wipat & Jan Baumbach & Dav, 2023. "Lacking mechanistic disease definitions and corresponding association data hamper progress in network medicine and beyond," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Katrin Rabold & Martijn Zoodsma & Inge Grondman & Yunus Kuijpers & Manita Bremmers & Martin Jaeger & Bowen Zhang & Willemijn Hobo & Han J. Bonenkamp & Johannes H. W. Wilt & Marcel J. R. Janssen & Lenn, 2022. "Reprogramming of myeloid cells and their progenitors in patients with non-medullary thyroid carcinoma," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    3. Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    4. Pisanu Buphamalai & Tomislav Kokotovic & Vanja Nagy & Jörg Menche, 2021. "Network analysis reveals rare disease signatures across multiple levels of biological organization," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    5. Xinheng He & Lifen Zhao & Yinping Tian & Rui Li & Qinyu Chu & Zhiyong Gu & Mingyue Zheng & Yusong Wang & Shaoning Li & Hualiang Jiang & Yi Jiang & Liuqing Wen & Dingyan Wang & Xi Cheng, 2024. "Highly accurate carbohydrate-binding site prediction with DeepGlycanSite," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Patrick Bryant & Gabriele Pozzati & Arne Elofsson, 2022. "Improved prediction of protein-protein interactions using AlphaFold2," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    7. Peicong Lin & Yumeng Yan & Huanyu Tao & Sheng-You Huang, 2023. "Deep transfer learning for inter-chain contact predictions of transmembrane protein complexes," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    8. Mingxuan Che & Kui Yao & Chao Che & Zhangwei Cao & Fanchen Kong, 2021. "Knowledge-Graph-Based Drug Repositioning against COVID-19 by Graph Convolutional Network with Attention Mechanism," Future Internet, MDPI, vol. 13(1), pages 1-10, January.
    9. Efthymia Chantzi & Michael Neidlin & George A Macheras & Leonidas G Alexopoulos & Mats G Gustafsson, 2020. "COMBSecretomics: A pragmatic methodological framework for higher-order drug combination analysis using secretomics," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-18, May.
    10. Yuxuan Wang & Ying Xia & Junchi Yan & Ye Yuan & Hong-Bin Shen & Xiaoyong Pan, 2023. "ZeroBind: a protein-specific zero-shot predictor with subgraph matching for drug-target interactions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Qing Ye & Chang-Yu Hsieh & Ziyi Yang & Yu Kang & Jiming Chen & Dongsheng Cao & Shibo He & Tingjun Hou, 2021. "A unified drug–target interaction prediction framework based on knowledge graph and recommendation system," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    12. Wen Zhang & Xiang Yue & Guifeng Tang & Wenjian Wu & Feng Huang & Xining Zhang, 2018. "SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-21, December.
    13. Xiaomin Liang & Daifeng Li & Min Song & Andrew Madden & Ying Ding & Yi Bu, 2019. "Predicting biomedical relationships using the knowledge and graph embedding cascade model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
    14. Lucien F. Krapp & Luciano A. Abriata & Fabio Cortés Rodriguez & Matteo Dal Peraro, 2023. "PeSTo: parameter-free geometric deep learning for accurate prediction of protein binding interfaces," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Lucien F. Krapp & Fernando A. Meireles & Luciano A. Abriata & Jean Devillard & Sarah Vacle & Maria J. Marcaida & Matteo Dal Peraro, 2024. "Context-aware geometric deep learning for protein sequence design," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Zemin Zhang & Yuanqing Li & Jie Yang & Jiacheng Li & Xiongqiang Lin & Ting Liu & Shiling Yang & Jin Lin & Shengyu Xue & Jiamin Yu & Cailing Tang & Ziteng Li & Liping Liu & Zhengzheng Ye & Yanan Deng &, 2024. "Dual-site molecular glues for enhancing protein-protein interactions of the CDK12-DDB1 complex," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48801-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.