Neighborhood Regularized Logistic Matrix Factorization for Drug-Target Interaction Prediction
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1004760
Download full text from publisher
References listed on IDEAS
- Kejian Wang & Jiazhi Sun & Shufeng Zhou & Chunling Wan & Shengying Qin & Can Li & Lin He & Lun Yang, 2013. "Prediction of Drug-Target Interactions for Drug Repositioning Only Based on Genomic Expression Similarity," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-9, November.
- Bin Chen & Ying Ding & David J Wild, 2012. "Assessing Drug Target Association Using Semantic Linked Data," PLOS Computational Biology, Public Library of Science, vol. 8(7), pages 1-10, July.
- Twan van Laarhoven & Elena Marchiori, 2013. "Predicting Drug-Target Interactions for New Drug Compounds Using a Weighted Nearest Neighbor Profile," PLOS ONE, Public Library of Science, vol. 8(6), pages 1-6, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hansaim Lim & Aleksandar Poleksic & Yuan Yao & Hanghang Tong & Di He & Luke Zhuang & Patrick Meng & Lei Xie, 2016. "Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-26, October.
- Anna Cichonska & Balaguru Ravikumar & Elina Parri & Sanna Timonen & Tapio Pahikkala & Antti Airola & Krister Wennerberg & Juho Rousu & Tero Aittokallio, 2017. "Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-28, August.
- Qing Ye & Chang-Yu Hsieh & Ziyi Yang & Yu Kang & Jiming Chen & Dongsheng Cao & Shibo He & Tingjun Hou, 2021. "A unified drug–target interaction prediction framework based on knowledge graph and recommendation system," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
- Benoit Playe & Chloé-Agathe Azencott & Véronique Stoven, 2018. "Efficient multi-task chemogenomics for drug specificity prediction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-34, October.
- Mingxuan Che & Kui Yao & Chao Che & Zhangwei Cao & Fanchen Kong, 2021. "Knowledge-Graph-Based Drug Repositioning against COVID-19 by Graph Convolutional Network with Attention Mechanism," Future Internet, MDPI, vol. 13(1), pages 1-10, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Benoit Playe & Chloé-Agathe Azencott & Véronique Stoven, 2018. "Efficient multi-task chemogenomics for drug specificity prediction," PLOS ONE, Public Library of Science, vol. 13(10), pages 1-34, October.
- Hansaim Lim & Aleksandar Poleksic & Yuan Yao & Hanghang Tong & Di He & Luke Zhuang & Patrick Meng & Lei Xie, 2016. "Large-Scale Off-Target Identification Using Fast and Accurate Dual Regularized One-Class Collaborative Filtering and Its Application to Drug Repurposing," PLOS Computational Biology, Public Library of Science, vol. 12(10), pages 1-26, October.
- Lv, Yanhua & Ding, Ying & Song, Min & Duan, Zhiguang, 2018. "Topology-driven trend analysis for drug discovery," Journal of Informetrics, Elsevier, vol. 12(3), pages 893-905.
- E Tejera & I Carrera & Karina Jimenes-Vargas & V Armijos-Jaramillo & A Sánchez-Rodríguez & M Cruz-Monteagudo & Y Perez-Castillo, 2019. "Cell fishing: A similarity based approach and machine learning strategy for multiple cell lines-compound sensitivity prediction," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-11, October.
- Cheng Yan & Jianxin Wang & Wei Lan & Fang-Xiang Wu & Yi Pan, 2017. "SDTRLS: Predicting Drug-Target Interactions for Complex Diseases Based on Chemical Substructures," Complexity, Hindawi, vol. 2017, pages 1-10, December.
- Chao Huang & Yang Yang & Xuetong Chen & Chao Wang & Yan Li & Chunli Zheng & Yonghua Wang, 2017. "Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines," PLOS ONE, Public Library of Science, vol. 12(9), pages 1-20, September.
- Anna Cichonska & Balaguru Ravikumar & Elina Parri & Sanna Timonen & Tapio Pahikkala & Antti Airola & Krister Wennerberg & Juho Rousu & Tero Aittokallio, 2017. "Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-28, August.
- Krisztian Buza & Ladislav Peška & Júlia Koller, 2020. "Modified linear regression predicts drug-target interactions accurately," PLOS ONE, Public Library of Science, vol. 15(4), pages 1-18, April.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1004760. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.