IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0218264.html
   My bibliography  Save this article

Predicting biomedical relationships using the knowledge and graph embedding cascade model

Author

Listed:
  • Xiaomin Liang
  • Daifeng Li
  • Min Song
  • Andrew Madden
  • Ying Ding
  • Yi Bu

Abstract

Advances in machine learning and deep learning methods, together with the increasing availability of large-scale pharmacological, genomic, and chemical datasets, have created opportunities for identifying potentially useful relationships within biochemical networks. Knowledge embedding models have been found to have value in detecting knowledge-based correlations among entities, but little effort has been made to apply them to networks of biochemical entities. This is because such networks tend to be unbalanced and sparse, and knowledge embedding models do not work well on them. However, to some extent, the shortcomings of knowledge embedding models can be compensated for if they are used in association with graph embedding. In this paper, we combine knowledge embedding and graph embedding to represent biochemical entities and their relations as dense and low-dimensional vectors. We build a cascade learning framework which incorporates semantic features from the knowledge embedding model, and graph features from the graph embedding model, to score the probability of linking. The proposed method performs noticeably better than the models with which it is compared. It predicted links and entities with an accuracy of 93%, and its average hits@10 score has an average of 8.6% absolute improvement compared with original knowledge embedding model, 1.1% to 9.7% absolute improvement compared with other knowledge and graph embedding algorithm. In addition, we designed a meta-path algorithm to detect path relations in the biomedical network. Case studies further verify the value of the proposed model in finding potential relationships between diseases, drugs, genes, treatments, etc. Amongst the findings of the proposed model are the suggestion that VDR (vitamin D receptor) may be linked to prostate cancer. This is backed by evidence from medical databases and published research, supporting the suggestion that our proposed model could be of value to biomedical researchers.

Suggested Citation

  • Xiaomin Liang & Daifeng Li & Min Song & Andrew Madden & Ying Ding & Yi Bu, 2019. "Predicting biomedical relationships using the knowledge and graph embedding cascade model," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-23, June.
  • Handle: RePEc:plo:pone00:0218264
    DOI: 10.1371/journal.pone.0218264
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218264
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0218264&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0218264?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yunan Luo & Xinbin Zhao & Jingtian Zhou & Jinglin Yang & Yanqing Zhang & Wenhua Kuang & Jian Peng & Ligong Chen & Jianyang Zeng, 2017. "A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingxuan Che & Kui Yao & Chao Che & Zhangwei Cao & Fanchen Kong, 2021. "Knowledge-Graph-Based Drug Repositioning against COVID-19 by Graph Convolutional Network with Attention Mechanism," Future Internet, MDPI, vol. 13(1), pages 1-10, January.
    2. Yuxuan Wang & Ying Xia & Junchi Yan & Ye Yuan & Hong-Bin Shen & Xiaoyong Pan, 2023. "ZeroBind: a protein-specific zero-shot predictor with subgraph matching for drug-target interactions," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    3. Qing Ye & Chang-Yu Hsieh & Ziyi Yang & Yu Kang & Jiming Chen & Dongsheng Cao & Shibo He & Tingjun Hou, 2021. "A unified drug–target interaction prediction framework based on knowledge graph and recommendation system," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    4. Wen Zhang & Xiang Yue & Guifeng Tang & Wenjian Wu & Feng Huang & Xining Zhang, 2018. "SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-21, December.
    5. Jiahua Rao & Jiancong Xie & Qianmu Yuan & Deqin Liu & Zhen Wang & Yutong Lu & Shuangjia Zheng & Yuedong Yang, 2024. "A variational expectation-maximization framework for balanced multi-scale learning of protein and drug interactions," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0218264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.