IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v11y2019i4p95-d222025.html
   My bibliography  Save this article

Influence Maximization in Social Network Considering Memory Effect and Social Reinforcement Effect

Author

Listed:
  • Fei Wang

    (Department of Information Science and Engineering, Shandong Normal University, Jinan 250357, China)

  • Zhenfang Zhu

    (Department of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Peiyu Liu

    (Department of Information Science and Engineering, Shandong Normal University, Jinan 250357, China)

  • Peipei Wang

    (Department of Accounting, Shandong Institute of Management, Jinan 250357, China)

Abstract

Social networks have attracted a lot of attention as novel information or advertisement diffusion media for viral marketing. Influence maximization describes the problem of finding a small subset of seed nodes in a social network that could maximize the spread of influence. A lot of algorithms have been proposed to solve this problem. Recently, in order to achieve more realistic viral marketing scenarios, some constrained versions of influence maximization, which consider time constraints, budget constraints and so on, have been proposed. However, none of them considers the memory effect and the social reinforcement effect, which are ubiquitous properties of social networks. In this paper, we define a new constrained version of the influence maximization problem that captures the social reinforcement and memory effects. We first propose a novel propagation model to capture the dynamics of the memory and social reinforcement effects. Then, we modify two baseline algorithms and design a new algorithm to solve the problem under the model. Experiments show that our algorithm achieves the best performance with relatively low time complexity. We also demonstrate that the new version captures some important properties of viral marketing in social networks, such as such as social reinforcements, and could explain some phenomena that cannot be explained by existing influence maximization problem definitions.

Suggested Citation

  • Fei Wang & Zhenfang Zhu & Peiyu Liu & Peipei Wang, 2019. "Influence Maximization in Social Network Considering Memory Effect and Social Reinforcement Effect," Future Internet, MDPI, vol. 11(4), pages 1-16, April.
  • Handle: RePEc:gam:jftint:v:11:y:2019:i:4:p:95-:d:222025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/11/4/95/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/11/4/95/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Qiyao & Jin, Yuehui & Lin, Zhen & Cheng, Shiduan & Yang, Tan, 2016. "Influence maximization in social networks under an independent cascade-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 20-34.
    2. Brown, Jacqueline Johnson & Reingen, Peter H, 1987. "Social Ties and Word-of-Mouth Referral Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(3), pages 350-362, December.
    3. Ma, Jing & Li, Dandan & Tian, Zihao, 2016. "Rumor spreading in online social networks by considering the bipolar social reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 108-115.
    4. Petter Holme, 2015. "Modern temporal network theory: a colloquium," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(9), pages 1-30, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huo, Liang’an & Chen, Sijing, 2020. "Rumor propagation model with consideration of scientific knowledge level and social reinforcement in heterogeneous network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 559(C).
    2. Choo Yeon Kim & Seong Soo Cha, 2023. "Effect of SNS Characteristics for Dining Out on Customer Satisfaction and Online Word of Mouth," SAGE Open, , vol. 13(3), pages 21582440231, September.
    3. Li, Dandan & Ma, Jing, 2017. "How the government’s punishment and individual’s sensitivity affect the rumor spreading in online social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 284-292.
    4. Jennifer K D’Angelo & Kristin Diehl & Lisa A Cavanaugh, 2019. "Lead by Example? Custom-Made Examples Created by Close Others Lead Consumers to Make Dissimilar Choices," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 46(4), pages 750-773.
    5. Yucheng Zhang & Zhiling Wang & Lin Xiao & Lijun Wang & Pei Huang, 2023. "Discovering the evolution of online reviews: A bibliometric review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-22, December.
    6. Feixiang Zhang & Liyong Zong, 2014. "Dissemination of Word of Mouth Based on SNA Centrality Modeling and Power of Actors - An Empirical Analysis of Internet Word of Mouth," International Journal of Business Administration, International Journal of Business Administration, Sciedu Press, vol. 5(5), pages 65-70, September.
    7. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    8. Wang, Le & Luo, Xin (Robert) & Li, Han, 2022. "Envy or conformity? An empirical investigation of peer influence on the purchase of non-functional items in mobile free-to-play games," Journal of Business Research, Elsevier, vol. 147(C), pages 308-324.
    9. Anzhi Sheng & Qi Su & Aming Li & Long Wang & Joshua B. Plotkin, 2023. "Constructing temporal networks with bursty activity patterns," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    10. Panayotis Christidis & Álvaro Gomez Losada, 2019. "Email Based Institutional Network Analysis: Applications and Risks," Social Sciences, MDPI, vol. 8(11), pages 1-14, November.
    11. Yadav, Manjit S. & de Valck, Kristine & Hennig-Thurau, Thorsten & Hoffman, Donna L. & Spann, Martin, 2013. "Social Commerce: A Contingency Framework for Assessing Marketing Potential," Journal of Interactive Marketing, Elsevier, vol. 27(4), pages 311-323.
    12. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    13. Fang Di & Richards Timothy J. & Grebitus Carola, 2019. "Modeling Product Choices in a Peer Network," Forum for Health Economics & Policy, De Gruyter, vol. 22(1), pages 1-13, June.
    14. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    15. Jalees, Tariq & Tariq, Huma & Zaman, Syed Imran & Alam Kazmi, Syed Hasnain, 2015. "Social Media in Virtual Marketing," MPRA Paper 69868, University Library of Munich, Germany, revised 10 Apr 2015.
    16. Songhong Chen & Jian Ming Luo, 2023. "Understand Delegates Risk Attitudes and Behaviour: The Moderating Effect of Trust in COVID-19 Vaccination," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    17. Sebastian Schneider, 2022. "Price-related consumer discussions in China and the United States: a cross-cultural study investigating price perceptions and word-of-mouth transmission," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 21(3), pages 274-290, June.
    18. Bogdan Anastasiei & Nicoleta Dospinescu, 2019. "Electronic Word-of-Mouth for Online Retailers: Predictors of Volume and Valence," Sustainability, MDPI, vol. 11(3), pages 1-18, February.
    19. Easley, Richard W. & Bearden, William O. & Teel, Jesse E., 1995. "Testing predictions derived from inoculation theory and the effectiveness of self-disclosure communications strategies," Journal of Business Research, Elsevier, vol. 34(2), pages 93-105, October.
    20. Dantsuji, Takao & Sugishita, Kashin & Fukuda, Daisuke, 2023. "Understanding changes in travel patterns during the COVID-19 outbreak in the three major metropolitan areas of Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:11:y:2019:i:4:p:95-:d:222025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.