IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v11y2019i4p95-d222025.html
   My bibliography  Save this article

Influence Maximization in Social Network Considering Memory Effect and Social Reinforcement Effect

Author

Listed:
  • Fei Wang

    (Department of Information Science and Engineering, Shandong Normal University, Jinan 250357, China)

  • Zhenfang Zhu

    (Department of Information Science and Electrical Engineering, Shandong Jiaotong University, Jinan 250357, China)

  • Peiyu Liu

    (Department of Information Science and Engineering, Shandong Normal University, Jinan 250357, China)

  • Peipei Wang

    (Department of Accounting, Shandong Institute of Management, Jinan 250357, China)

Abstract

Social networks have attracted a lot of attention as novel information or advertisement diffusion media for viral marketing. Influence maximization describes the problem of finding a small subset of seed nodes in a social network that could maximize the spread of influence. A lot of algorithms have been proposed to solve this problem. Recently, in order to achieve more realistic viral marketing scenarios, some constrained versions of influence maximization, which consider time constraints, budget constraints and so on, have been proposed. However, none of them considers the memory effect and the social reinforcement effect, which are ubiquitous properties of social networks. In this paper, we define a new constrained version of the influence maximization problem that captures the social reinforcement and memory effects. We first propose a novel propagation model to capture the dynamics of the memory and social reinforcement effects. Then, we modify two baseline algorithms and design a new algorithm to solve the problem under the model. Experiments show that our algorithm achieves the best performance with relatively low time complexity. We also demonstrate that the new version captures some important properties of viral marketing in social networks, such as such as social reinforcements, and could explain some phenomena that cannot be explained by existing influence maximization problem definitions.

Suggested Citation

  • Fei Wang & Zhenfang Zhu & Peiyu Liu & Peipei Wang, 2019. "Influence Maximization in Social Network Considering Memory Effect and Social Reinforcement Effect," Future Internet, MDPI, vol. 11(4), pages 1-16, April.
  • Handle: RePEc:gam:jftint:v:11:y:2019:i:4:p:95-:d:222025
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/11/4/95/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/11/4/95/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wang, Qiyao & Jin, Yuehui & Lin, Zhen & Cheng, Shiduan & Yang, Tan, 2016. "Influence maximization in social networks under an independent cascade-based model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 20-34.
    2. Brown, Jacqueline Johnson & Reingen, Peter H, 1987. "Social Ties and Word-of-Mouth Referral Behavior," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 14(3), pages 350-362, December.
    3. Ma, Jing & Li, Dandan & Tian, Zihao, 2016. "Rumor spreading in online social networks by considering the bipolar social reinforcement," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 447(C), pages 108-115.
    4. Petter Holme, 2015. "Modern temporal network theory: a colloquium," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(9), pages 1-30, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jennifer K D’Angelo & Kristin Diehl & Lisa A Cavanaugh, 2019. "Lead by Example? Custom-Made Examples Created by Close Others Lead Consumers to Make Dissimilar Choices," Journal of Consumer Research, Journal of Consumer Research Inc., vol. 46(4), pages 750-773.
    2. Hosni, Adil Imad Eddine & Li, Kan & Ahmad, Sadique, 2020. "Analysis of the impact of online social networks addiction on the propagation of rumors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    3. Wang, Le & Luo, Xin (Robert) & Li, Han, 2022. "Envy or conformity? An empirical investigation of peer influence on the purchase of non-functional items in mobile free-to-play games," Journal of Business Research, Elsevier, vol. 147(C), pages 308-324.
    4. Yadav, Manjit S. & de Valck, Kristine & Hennig-Thurau, Thorsten & Hoffman, Donna L. & Spann, Martin, 2013. "Social Commerce: A Contingency Framework for Assessing Marketing Potential," Journal of Interactive Marketing, Elsevier, vol. 27(4), pages 311-323.
    5. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    6. Jia, Pingqi & Wang, Chao & Zhang, Gaoyu & Ma, Jianfeng, 2019. "A rumor spreading model based on two propagation channels in social networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 342-353.
    7. Songhong Chen & Jian Ming Luo, 2023. "Understand Delegates Risk Attitudes and Behaviour: The Moderating Effect of Trust in COVID-19 Vaccination," IJERPH, MDPI, vol. 20(5), pages 1-18, February.
    8. Easley, Richard W. & Bearden, William O. & Teel, Jesse E., 1995. "Testing predictions derived from inoculation theory and the effectiveness of self-disclosure communications strategies," Journal of Business Research, Elsevier, vol. 34(2), pages 93-105, October.
    9. Dantsuji, Takao & Sugishita, Kashin & Fukuda, Daisuke, 2023. "Understanding changes in travel patterns during the COVID-19 outbreak in the three major metropolitan areas of Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    10. Reema Nofal & Pelin Bayram & Okechukwu Lawrence Emeagwali & Lu’ay Al-Mu’ani, 2022. "The Effect of eWOM Source on Purchase Intention: The Moderation Role of Weak-Tie eWOM," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    11. Yuho Chung & Yiwei Li & Jianmin Jia, 2021. "Exploring embeddedness, centrality, and social influence on backer behavior: the role of backer networks in crowdfunding," Journal of the Academy of Marketing Science, Springer, vol. 49(5), pages 925-946, September.
    12. Sebastian Martin & Birgit Grüb, 0. "Intensive WOM-behavior in the healthcare sector – the case of an Austrian hospital’s Facebook site," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 0, pages 1-22.
    13. Hu, Miao & Chen, Jie & Chen, Qimei & He, Wei, 2020. "It pays off to be authentic: An examination of direct versus indirect brand mentions on social media," Journal of Business Research, Elsevier, vol. 117(C), pages 19-28.
    14. Jolanta Tkaczyk, 2015. "Consumer Susceptibility to Social Influence and Tendency to Generate a Positive or Negative Message in Word of Mouth Communication," International Conference on Marketing and Business Development Journal, The Bucharest University of Economic Studies, vol. 1(1), pages 21-28, July.
    15. Wang, Kai-Yu & Ting, I-Hsien & Wu, Hui-Ju, 2013. "Discovering interest groups for marketing in virtual communities: An integrated approach," Journal of Business Research, Elsevier, vol. 66(9), pages 1360-1366.
    16. Maise Soares Pereira & Ivan Lapuente Garrido & Celso Augusto de Matos, 2015. "Firm-Created Word-of-Mouth Recommendation: is it Also Worthwhile?," Brazilian Business Review, Fucape Business School, vol. 12(3), pages 91-118, May.
    17. Chakravarty, Anindita & Liu, Yong & Mazumdar, Tridib, 2010. "The Differential Effects of Online Word-of-Mouth and Critics' Reviews on Pre-release Movie Evaluation," Journal of Interactive Marketing, Elsevier, vol. 24(3), pages 185-197.
    18. Kim, Juran & Kang, Seungmook & Lee, Ki Hoon, 2021. "Evolution of digital marketing communication: Bibliometric analysis and network visualization from key articles," Journal of Business Research, Elsevier, vol. 130(C), pages 552-563.
    19. Claus, Bart & Geyskens, Kelly & Millet, Kobe & Dewitte, Siegfried, 2012. "The referral backfire effect: The identity-threatening nature of referral failure," International Journal of Research in Marketing, Elsevier, vol. 29(4), pages 370-379.
    20. Palmeira, Mauricio, 2020. "Advice in the presence of external cues: The impact of conflicting judgments on perceptions of expertise," Organizational Behavior and Human Decision Processes, Elsevier, vol. 156(C), pages 82-96.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:11:y:2019:i:4:p:95-:d:222025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.