IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v175y2023ics0965856423001829.html
   My bibliography  Save this article

Understanding changes in travel patterns during the COVID-19 outbreak in the three major metropolitan areas of Japan

Author

Listed:
  • Dantsuji, Takao
  • Sugishita, Kashin
  • Fukuda, Daisuke

Abstract

Unlike the lockdown measures taken in some countries or cities during the COVID-19 outbreak, the Japanese government declared a “State of Emergency” (SOE) under which people were only requested to reduce their contact with other people by at least 70%, while some local governments also implemented their own mobility-reduction measures that had no legal basis. The effects of these measures are still unclear. Thus, in this study, we investigate changes in travel patterns in response to the COVID-19 outbreak and related policy measures in Japan using longitudinal aggregated mobile phone data. Specifically, we consider daily travel patterns as networks and analyze their structural changes by applying a framework for analyzing temporal networks used in network science. The cluster analysis with the network similarity measures across different dates showed that there are six main types of mobility patterns in the three major metropolitan areas of Japan: (I) weekends and holidays prior to the COVID-19 outbreak, (II) weekdays prior to the COVID-19 outbreak, (III) weekends and holidays before and after the SOE, (IV) weekdays before and after the SOE, (V) weekends and holidays during the SOE, and (VI) weekdays during the SOE. It was also found that travel patterns might have started to change from March 2020, when most schools were closed, and that the mobility patterns after the SOE returned to those prior to the SOE. Interestingly, we found that after the lifting of the SOE, travel patterns remained similar to those during the SOE for a few days, suggesting the possibility that self-restraint continued after the lifting of the SOE. Moreover, in the case of the Nagoya metropolitan area, we found that people voluntarily changed their travel patterns when the number of cases increased.

Suggested Citation

  • Dantsuji, Takao & Sugishita, Kashin & Fukuda, Daisuke, 2023. "Understanding changes in travel patterns during the COVID-19 outbreak in the three major metropolitan areas of Japan," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:transa:v:175:y:2023:i:c:s0965856423001829
    DOI: 10.1016/j.tra.2023.103762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856423001829
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2023.103762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yamaguchi, Hiromichi & Nakayama, Shoichiro, 2020. "Detection of base travel groups with different sensitivities to new high-speed rail services: Non-negative tensor decomposition approach," Transport Policy, Elsevier, vol. 97(C), pages 37-46.
    2. Ji, Yuxuan & Geroliminis, Nikolas, 2012. "On the spatial partitioning of urban transportation networks," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1639-1656.
    3. Petter Holme, 2015. "Modern temporal network theory: a colloquium," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 88(9), pages 1-30, September.
    4. Baek, ChaeWon & McCrory, Peter B & Messer, Todd & Mui, Preston, 2020. "Unemployment Effects of Stay-at-Home Orders: Evidence from High Frequency Claims Data," Institute for Research on Labor and Employment, Working Paper Series qt042177j7, Institute of Industrial Relations, UC Berkeley.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yang & Sugishita, Kashin & Hanaoka, Shinya, 2024. "Vaccination and transportation intervention strategies for effective pandemic control," Transport Policy, Elsevier, vol. 156(C), pages 126-137.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Miescu, Mirela & Rossi, Raffaele, 2021. "COVID-19-induced shocks and uncertainty," European Economic Review, Elsevier, vol. 139(C).
    2. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    3. Davide Furceri & Siddharth Kothari & Longmei Zhang, 2021. "The effects of COVID‐19 containment measures on the Asia‐Pacific region," Pacific Economic Review, Wiley Blackwell, vol. 26(4), pages 469-497, October.
    4. Kuzmanic, Danilo & Valenzuela, Juan Pablo & Claro, Susana & Canales, Andrea & Cerda, Daniela & Undurraga, Eduardo A., 2023. "Socioeconomic disparities in the reopening of schools during the pandemic in Chile," International Journal of Educational Development, Elsevier, vol. 100(C).
    5. Auerbach, Alan & Gorodnichenko, Yuriy & McCrory, Peter B. & Murphy, Daniel, 2022. "Fiscal multipliers in the COVID19 recession," Journal of International Money and Finance, Elsevier, vol. 126(C).
    6. Correia, Sergio & Luck, Stephan & Verner, Emil, 2022. "Pandemics Depress the Economy, Public Health Interventions Do Not: Evidence from the 1918 Flu," The Journal of Economic History, Cambridge University Press, vol. 82(4), pages 917-957, December.
    7. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.
    8. Takao Dantsuji & Daisuke Fukuda & Nan Zheng, 2021. "Simulation-based joint optimization framework for congestion mitigation in multimodal urban network: a macroscopic approach," Transportation, Springer, vol. 48(2), pages 673-697, April.
    9. Du, Jie & Wong, S.C. & Shu, Chi-Wang & Xiong, Tao & Zhang, Mengping & Choi, Keechoo, 2013. "Revisiting Jiang’s dynamic continuum model for urban cities," Transportation Research Part B: Methodological, Elsevier, vol. 56(C), pages 96-119.
    10. Xiaobing Shuai & Christine Chmura & James Stinchcomb, 2021. "COVID-19, labor demand, and government responses: evidence from job posting data," Business Economics, Palgrave Macmillan;National Association for Business Economics, vol. 56(1), pages 29-42, January.
    11. Dave, Dhaval & Friedson, Andrew & Matsuzawa, Kyutaro & Sabia, Joseph J. & Safford, Samuel, 2022. "JUE Insight: Were urban cowboys enough to control COVID-19? Local shelter-in-place orders and coronavirus case growth," Journal of Urban Economics, Elsevier, vol. 127(C).
    12. Pietro DeLellis & Anna DiMeglio & Franco Garofalo & Francesco Lo Iudice, 2017. "The evolving cobweb of relations among partially rational investors," PLOS ONE, Public Library of Science, vol. 12(2), pages 1-21, February.
    13. Gianni De Fraja & Jesse Matheson & James Rockey, 2020. "Zoomshock: The geography and local labour market consequences of working from home," Discussion Papers 20-31, Department of Economics, University of Birmingham.
    14. Karan, Rituraj & Biswal, Bibhu, 2017. "A model for evolution of overlapping community networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 380-390.
    15. Kouvelas, Anastasios & Saeedmanesh, Mohammadreza & Geroliminis, Nikolas, 2017. "Enhancing model-based feedback perimeter control with data-driven online adaptive optimization," Transportation Research Part B: Methodological, Elsevier, vol. 96(C), pages 26-45.
    16. Tang, Siyi & Zheng, Fangfang & Zheng, Nan & Liu, Xiaobo, 2024. "An efficient multi-modal urban transportation network partitioning approach for three-dimensional macroscopic fundamental diagram," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    17. Li, Mingwu & Dankowicz, Harry, 2019. "Impact of temporal network structures on the speed of consensus formation in opinion dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1355-1370.
    18. Sindhuja Ranganathan & Mikko Kivelä & Juho Kanniainen, 2018. "Dynamics of investor spanning trees around dot-com bubble," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-14, June.
    19. Zhao, De & Ong, Ghim Ping, 2021. "Geo-fenced parking spaces identification for free-floating bicycle sharing system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 148(C), pages 49-63.
    20. Miriam Marcén & Marina Morales, 2021. "The intensity of COVID‐19 nonpharmaceutical interventions and labor market outcomes in the public sector," Journal of Regional Science, Wiley Blackwell, vol. 61(4), pages 775-798, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:175:y:2023:i:c:s0965856423001829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.