IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v7y2025i1p6-d1577235.html
   My bibliography  Save this article

Assessment of Deep Neural Network Models for Direct and Recursive Multi-Step Prediction of PM10 in Southern Spain

Author

Listed:
  • Javier Gómez-Gómez

    (GEPENA Research Group, Gregor Mendel Building (3rd Floor), Campus Rabanales, University of Cordoba, 14071 Cordoba, Spain)

  • Eduardo Gutiérrez de Ravé

    (GEPENA Research Group, Gregor Mendel Building (3rd Floor), Campus Rabanales, University of Cordoba, 14071 Cordoba, Spain)

  • Francisco J. Jiménez-Hornero

    (GEPENA Research Group, Gregor Mendel Building (3rd Floor), Campus Rabanales, University of Cordoba, 14071 Cordoba, Spain)

Abstract

Western Europe has been strongly affected in the last decades by Saharan dust incursions, causing a high PM10 concentration and red rain. In this study, dust events and the performance of seven neural network prediction models, including convolutional neural networks (CNN) and recurrent neural networks (RNN), have been analyzed in a PM10 concentration series from a monitoring station in Córdoba, southern Spain. The models were also assessed here for recursive multi-step prediction over different forecast periods in three different situations: background concentration, a strong dust event, and an extreme dust event. A very important increase in the number of dust events has been identified in the last few years. Results show that CNN models outperform the other models in terms of accuracy for direct 24 h prediction (RMSE values between 10.00 and 10.20 μg/m 3 ), whereas the recursive prediction is only suitable for background concentration in the short term (for 2–5-day forecasts). The assessment and improvement of prediction models might help the development of early-warning systems for these events. From the authors’ perspective, the evaluation of trained models beyond the direct multi-step predictions allowed to fill a gap in this research field, which few articles have explored in depth.

Suggested Citation

  • Javier Gómez-Gómez & Eduardo Gutiérrez de Ravé & Francisco J. Jiménez-Hornero, 2025. "Assessment of Deep Neural Network Models for Direct and Recursive Multi-Step Prediction of PM10 in Southern Spain," Forecasting, MDPI, vol. 7(1), pages 1-21, January.
  • Handle: RePEc:gam:jforec:v:7:y:2025:i:1:p:6-:d:1577235
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/7/1/6/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/7/1/6/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexandra L’Heureux & Katarina Grolinger & Miriam A. M. Capretz, 2022. "Transformer-Based Model for Electrical Load Forecasting," Energies, MDPI, vol. 15(14), pages 1-23, July.
    2. Jonathan Berrisch & Micha{l} Narajewski & Florian Ziel, 2022. "High-Resolution Peak Demand Estimation Using Generalized Additive Models and Deep Neural Networks," Papers 2203.03342, arXiv.org, revised Nov 2022.
    3. Ibrahim, Muhammad Sohail & Dong, Wei & Yang, Qiang, 2020. "Machine learning driven smart electric power systems: Current trends and new perspectives," Applied Energy, Elsevier, vol. 272(C).
    4. Wei, Ziqing & Zhang, Tingwei & Yue, Bao & Ding, Yunxiao & Xiao, Ran & Wang, Ruzhu & Zhai, Xiaoqiang, 2021. "Prediction of residential district heating load based on machine learning: A case study," Energy, Elsevier, vol. 231(C).
    5. Hyunsoo Kim & Jiseok Jeong & Changwan Kim, 2022. "Daily Peak-Electricity-Demand Forecasting Based on Residual Long Short-Term Network," Mathematics, MDPI, vol. 10(23), pages 1-17, November.
    6. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    7. Ng, Rong Wang & Begam, Kasim Mumtaj & Rajkumar, Rajprasad Kumar & Wong, Yee Wan & Chong, Lee Wai, 2021. "An improved self-organizing incremental neural network model for short-term time-series load prediction," Applied Energy, Elsevier, vol. 292(C).
    8. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    9. Liu, Che & Li, Fan & Zhang, Chenghui & Sun, Bo & Zhang, Guanguan, 2023. "A day-ahead prediction method for high-resolution electricity consumption in residential units," Energy, Elsevier, vol. 265(C).
    10. Hao Zhen & Dongxiao Niu & Min Yu & Keke Wang & Yi Liang & Xiaomin Xu, 2020. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction," Sustainability, MDPI, vol. 12(22), pages 1-24, November.
    11. Nasir Ayub & Muhammad Irfan & Muhammad Awais & Usman Ali & Tariq Ali & Mohammed Hamdi & Abdullah Alghamdi & Fazal Muhammad, 2020. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler," Energies, MDPI, vol. 13(19), pages 1-21, October.
    12. Hui, Hongxun & Chen, Yulin & Yang, Shaohua & Zhang, Hongcai & Jiang, Tao, 2022. "Coordination control of distributed generators and load resources for frequency restoration in isolated urban microgrids," Applied Energy, Elsevier, vol. 327(C).
    13. Li, Yiyan & Zhang, Si & Hu, Rongxing & Lu, Ning, 2021. "A meta-learning based distribution system load forecasting model selection framework," Applied Energy, Elsevier, vol. 294(C).
    14. Fang, Xi & Gong, Guangcai & Li, Guannan & Chun, Liang & Li, Wenqiang & Peng, Pei, 2021. "A hybrid deep transfer learning strategy for short term cross-building energy prediction," Energy, Elsevier, vol. 215(PB).
    15. Hui, Hongxun & Ding, Yi & Song, Yonghua, 2020. "Adaptive time-delay control of flexible loads in power systems facing accidental outages," Applied Energy, Elsevier, vol. 275(C).
    16. Wang, Haoxuan & Chen, Huaian & Wang, Ben & Jin, Yi & Li, Guiqiang & Kan, Yan, 2022. "High-efficiency low-power microdefect detection in photovoltaic cells via a field programmable gate array-accelerated dual-flow network," Applied Energy, Elsevier, vol. 318(C).
    17. Di Natale, L. & Svetozarevic, B. & Heer, P. & Jones, C.N., 2022. "Physically Consistent Neural Networks for building thermal modeling: Theory and analysis," Applied Energy, Elsevier, vol. 325(C).
    18. Ma, Yichuan X. & Yeung, Lawrence K., 2024. "BEForeGAN: An image-based deep generative approach for day-ahead forecasting of building HVAC energy consumption," Applied Energy, Elsevier, vol. 376(PA).
    19. Noye, Sarah & Mulero Martinez, Rubén & Carnieletto, Laura & De Carli, Michele & Castelruiz Aguirre, Amaia, 2022. "A review of advanced ground source heat pump control: Artificial intelligence for autonomous and adaptive control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:7:y:2025:i:1:p:6-:d:1577235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.