IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v377y2025ipcs0306261924020038.html
   My bibliography  Save this article

A hybrid load prediction method of office buildings based on physical simulation database and LightGBM algorithm

Author

Listed:
  • Lian, Huihui
  • Ji, Ying
  • Niu, Menghan
  • Gu, Jiefan
  • Xie, Jingchao
  • Liu, Jiaping

Abstract

Building load prediction plays an important role in building energy savings and mechanical and electrical system optimization control. The dynamic energy consumption can be accurately calculated using the traditional physical energy simulation method that entails a complex setup and verification process due to the numerous input parameters required. It is also difficult to change the physical model once it has been determined. The data-mining method is fast in calculation and simple to use, but its prediction accuracy is limited by historical data quality. It is difficult to predict the load of new buildings without historical data. To solve these problems, this study proposes a hybrid building load prediction method for office buildings. The proposed method uses EnergyPlus to generate a building load database that includes than 25.14 million data cases, covering 35 types of building geometry and 2870 building examples. Based on the above database, the LightGBM algorithm was selected to extract feature variables that affect the load and build a load prediction model. The training results show that there are 24 key feature variables for office building load prediction. The hourly MAPE of the cooling load prediction model is 6.95 % and RMSE is 4.31 W/m2, and the hourly MAPE of the heating load prediction model is 7.09 % and RMSE is 11.64 W/m2 compared with EnergyPlus model. Two actual office buildings are selected as case studies to validate the model prediction accuracy. Results show that comparing predicted results with measured data, the hourly cooling load of the MAPE is 12.42 %. Coparing predicted results with actual heating load, daily MAPE is 7.97 %.

Suggested Citation

  • Lian, Huihui & Ji, Ying & Niu, Menghan & Gu, Jiefan & Xie, Jingchao & Liu, Jiaping, 2025. "A hybrid load prediction method of office buildings based on physical simulation database and LightGBM algorithm," Applied Energy, Elsevier, vol. 377(PC).
  • Handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020038
    DOI: 10.1016/j.apenergy.2024.124620
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924020038
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124620?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:377:y:2025:i:pc:s0306261924020038. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.