IDEAS home Printed from https://ideas.repec.org/a/gam/jforec/v6y2024i1p8-151d1333779.html
   My bibliography  Save this article

Bootstrapping Long-Run Covariance of Stationary Functional Time Series

Author

Listed:
  • Han Lin Shang

    (Department of Actuarial Studies and Business Analytics, Level 7, 4 Eastern Rd, Macquarie University, Sydney, NSW 2109, Australia)

Abstract

A key summary statistic in a stationary functional time series is the long-run covariance function that measures serial dependence. It can be consistently estimated via a kernel sandwich estimator, which is the core of dynamic functional principal component regression for forecasting functional time series. To measure the uncertainty of the long-run covariance estimation, we consider sieve and functional autoregressive (FAR) bootstrap methods to generate pseudo-functional time series and study variability associated with the long-run covariance. The sieve bootstrap method is nonparametric (i.e., model-free), while the FAR bootstrap method is semi-parametric. The sieve bootstrap method relies on functional principal component analysis to decompose a functional time series into a set of estimated functional principal components and their associated scores. The scores can be bootstrapped via a vector autoregressive representation. The bootstrapped functional time series are obtained by multiplying the bootstrapped scores by the estimated functional principal components. The FAR bootstrap method relies on the FAR of order 1 to model the conditional mean of a functional time series, while residual functions can be bootstrapped via independent and identically distributed resampling. Through a series of Monte Carlo simulations, we evaluate and compare the finite-sample accuracy between the sieve and FAR bootstrap methods for quantifying the estimation uncertainty of the long-run covariance of a stationary functional time series.

Suggested Citation

  • Han Lin Shang, 2024. "Bootstrapping Long-Run Covariance of Stationary Functional Time Series," Forecasting, MDPI, vol. 6(1), pages 1-14, February.
  • Handle: RePEc:gam:jforec:v:6:y:2024:i:1:p:8-151:d:1333779
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-9394/6/1/8/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-9394/6/1/8/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
    2. Degui Li & Peter M. Robinson & Han Lin Shang, 2020. "Long-Range Dependent Curve Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 115(530), pages 957-971, April.
    3. Tomasz Górecki & Siegfried Hörmann & Lajos Horváth & Piotr Kokoszka, 2018. "Testing Normality of Functional Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(4), pages 471-487, July.
    4. Seung C. Ahn & Alex R. Horenstein, 2013. "Eigenvalue Ratio Test for the Number of Factors," Econometrica, Econometric Society, vol. 81(3), pages 1203-1227, May.
    5. Siegfried Hörmann & Łukasz Kidziński & Marc Hallin, 2015. "Dynamic functional principal components," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(2), pages 319-348, March.
    6. Clifford M. Hurvich & Chih‐Ling Tsai, 1993. "A Corrected Akaike Information Criterion For Vector Autoregressive Model Selection," Journal of Time Series Analysis, Wiley Blackwell, vol. 14(3), pages 271-279, May.
    7. Efstathios Paparoditis & Han Lin Shang, 2023. "Bootstrap Prediction Bands for Functional Time Series," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(542), pages 972-986, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Yichao & Pun, Chi Seng, 2019. "A bootstrap-based KPSS test for functional time series," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    2. Shang, Han Lin & Kearney, Fearghal, 2022. "Dynamic functional time-series forecasts of foreign exchange implied volatility surfaces," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1025-1049.
    3. Chang, Jinyuan & Chen, Cheng & Qiao, Xinghao & Yao, Qiwei, 2023. "An autocovariance-based learning framework for high-dimensional functional time series," LSE Research Online Documents on Economics 117910, London School of Economics and Political Science, LSE Library.
    4. Han Lin Shang & Kaiying Ji, 2023. "Forecasting intraday financial time series with sieve bootstrapping and dynamic updating," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(8), pages 1973-1988, December.
    5. Degui Li & Peter M. Robinson & Han Lin Shang, 2021. "Local Whittle estimation of long‐range dependence for functional time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(5-6), pages 685-695, September.
    6. Yang, Yang & Yang, Yanrong & Shang, Han Lin, 2022. "Feature extraction for functional time series: Theory and application to NIR spectroscopy data," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    7. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2023. "Exploring volatility of crude oil intraday return curves: A functional GARCH-X model," Journal of Commodity Markets, Elsevier, vol. 32(C).
    8. Han Lin Shang, 2023. "Sieve bootstrapping the memory parameter in long-range dependent stationary functional time series," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(3), pages 421-441, September.
    9. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    10. Amira Elayouty & Marian Scott & Claire Miller, 2022. "Time-Varying Functional Principal Components for Non-Stationary EpCO $$_2$$ 2 in Freshwater Systems," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(3), pages 506-522, September.
    11. Qiang Ji & Dayong Zhang & Yuqian Zhao, 2022. "Intra-day co-movements of crude oil futures: China and the international benchmarks," Annals of Operations Research, Springer, vol. 313(1), pages 77-103, June.
    12. Meintanis, Simos G. & Hušková, Marie & Hlávka, Zdeněk, 2022. "Fourier-type tests of mutual independence between functional time series," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    13. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
    14. Haixu Wang & Jiguo Cao, 2023. "Nonlinear prediction of functional time series," Environmetrics, John Wiley & Sons, Ltd., vol. 34(5), August.
    15. Dominique Guégan & Matteo Iacopini, 2018. "Nonparameteric forecasting of multivariate probability density functions," Documents de travail du Centre d'Economie de la Sorbonne 18012, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne.
    16. Chang, Yoosoon & Choi, Yongok & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y., 2021. "Forecasting regional long-run energy demand: A functional coefficient panel approach," Energy Economics, Elsevier, vol. 96(C).
    17. Rituparna Sen & Anandamayee Majumdar & Shubhangi Sikaria, 2022. "Bayesian Testing of Granger Causality in Functional Time Series," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 191-210, September.
    18. Cees Diks & Bram Wouters, 2023. "Noise reduction for functional time series," Papers 2307.02154, arXiv.org.
    19. Han Lin Shang & Jiguo Cao & Peijun Sang, 2022. "Stopping time detection of wood panel compression: A functional time‐series approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1205-1224, November.
    20. Rice, Gregory & Wirjanto, Tony & Zhao, Yuqian, 2021. "Exploring volatility of crude oil intra-day return curves: a functional GARCH-X Model," MPRA Paper 109231, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:6:y:2024:i:1:p:8-151:d:1333779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.