Reinforced model predictive control (RL-MPC) for building energy management
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.118346
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- De Coninck, Roel & Helsen, Lieve, 2016. "Quantification of flexibility in buildings by cost curves – Methodology and application," Applied Energy, Elsevier, vol. 162(C), pages 653-665.
- Vázquez-Canteli, José R. & Nagy, Zoltán, 2019. "Reinforcement learning for demand response: A review of algorithms and modeling techniques," Applied Energy, Elsevier, vol. 235(C), pages 1072-1089.
- Antimo Barbato & Cristiana Bolchini & Angela Geronazzo & Elisa Quintarelli & Andrei Palamarciuc & Alessandro Pitì & Cristina Rottondi & Giacomo Verticale, 2016. "Energy Optimization and Management of Demand Response Interactions in a Smart Campus," Energies, MDPI, vol. 9(6), pages 1-20, May.
- Volodymyr Mnih & Koray Kavukcuoglu & David Silver & Andrei A. Rusu & Joel Veness & Marc G. Bellemare & Alex Graves & Martin Riedmiller & Andreas K. Fidjeland & Georg Ostrovski & Stig Petersen & Charle, 2015. "Human-level control through deep reinforcement learning," Nature, Nature, vol. 518(7540), pages 529-533, February.
- Drgoňa, Ján & Picard, Damien & Kvasnica, Michal & Helsen, Lieve, 2018. "Approximate model predictive building control via machine learning," Applied Energy, Elsevier, vol. 218(C), pages 199-216.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Kathirgamanathan, Anjukan & De Rosa, Mattia & Mangina, Eleni & Finn, Donal P., 2021. "Data-driven predictive control for unlocking building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Guo, Yurun & Wang, Shugang & Wang, Jihong & Zhang, Tengfei & Ma, Zhenjun & Jiang, Shuang, 2024. "Key district heating technologies for building energy flexibility: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
- Omar Al-Ani & Sanjoy Das, 2022. "Reinforcement Learning: Theory and Applications in HEMS," Energies, MDPI, vol. 15(17), pages 1-37, September.
- Oleh Lukianykhin & Tetiana Bogodorova, 2021. "Voltage Control-Based Ancillary Service Using Deep Reinforcement Learning," Energies, MDPI, vol. 14(8), pages 1-22, April.
- Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning," Energy, Elsevier, vol. 238(PC).
- Harrold, Daniel J.B. & Cao, Jun & Fan, Zhong, 2022. "Renewable energy integration and microgrid energy trading using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 318(C).
- Guo, Yuxiang & Qu, Shengli & Wang, Chuang & Xing, Ziwen & Duan, Kaiwen, 2024. "Optimal dynamic thermal management for data center via soft actor-critic algorithm with dynamic control interval and combined-value state space," Applied Energy, Elsevier, vol. 373(C).
- Touzani, Samir & Prakash, Anand Krishnan & Wang, Zhe & Agarwal, Shreya & Pritoni, Marco & Kiran, Mariam & Brown, Richard & Granderson, Jessica, 2021. "Controlling distributed energy resources via deep reinforcement learning for load flexibility and energy efficiency," Applied Energy, Elsevier, vol. 304(C).
- Park, Keonwoo & Moon, Ilkyeong, 2022. "Multi-agent deep reinforcement learning approach for EV charging scheduling in a smart grid," Applied Energy, Elsevier, vol. 328(C).
- Rae-Jun Park & Kyung-Bin Song & Bo-Sung Kwon, 2020. "Short-Term Load Forecasting Algorithm Using a Similar Day Selection Method Based on Reinforcement Learning," Energies, MDPI, vol. 13(10), pages 1-19, May.
- Antonopoulos, Ioannis & Robu, Valentin & Couraud, Benoit & Kirli, Desen & Norbu, Sonam & Kiprakis, Aristides & Flynn, David & Elizondo-Gonzalez, Sergio & Wattam, Steve, 2020. "Artificial intelligence and machine learning approaches to energy demand-side response: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Christian Blad & Simon Bøgh & Carsten Kallesøe, 2021. "A Multi-Agent Reinforcement Learning Approach to Price and Comfort Optimization in HVAC-Systems," Energies, MDPI, vol. 14(22), pages 1-20, November.
- Zheng, Zhuang & Shafique, Muhammad & Luo, Xiaowei & Wang, Shengwei, 2024. "A systematic review towards integrative energy management of smart grids and urban energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
- Esmaeili Aliabadi, Danial & Chan, Katrina, 2022. "The emerging threat of artificial intelligence on competition in liberalized electricity markets: A deep Q-network approach," Applied Energy, Elsevier, vol. 325(C).
- Biemann, Marco & Scheller, Fabian & Liu, Xiufeng & Huang, Lizhen, 2021. "Experimental evaluation of model-free reinforcement learning algorithms for continuous HVAC control," Applied Energy, Elsevier, vol. 298(C).
- Xie, Jiahan & Ajagekar, Akshay & You, Fengqi, 2023. "Multi-Agent attention-based deep reinforcement learning for demand response in grid-responsive buildings," Applied Energy, Elsevier, vol. 342(C).
- Qiu, Dawei & Dong, Zihang & Zhang, Xi & Wang, Yi & Strbac, Goran, 2022. "Safe reinforcement learning for real-time automatic control in a smart energy-hub," Applied Energy, Elsevier, vol. 309(C).
- Han, Gwangwoo & Joo, Hong-Jin & Lim, Hee-Won & An, Young-Sub & Lee, Wang-Je & Lee, Kyoung-Ho, 2023. "Data-driven heat pump operation strategy using rainbow deep reinforcement learning for significant reduction of electricity cost," Energy, Elsevier, vol. 270(C).
- Perera, A.T.D. & Kamalaruban, Parameswaran, 2021. "Applications of reinforcement learning in energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
More about this item
Keywords
Model predictive control; Reinforcement learning; Reinforced model predictive control; Building automation; BOPTEST;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921015932. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.