IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i8p2113-d349812.html
   My bibliography  Save this article

An Experimental Investigation of Wake Characteristics and Power Generation Efficiency of a Small Wind Turbine under Different Tip Speed Ratios

Author

Listed:
  • Yu-Ting Wu

    (Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan)

  • Chang-Yu Lin

    (Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan)

  • Che-Ming Hsu

    (Department of Engineering Science, National Cheng Kung University, Tainan 701, Taiwan)

Abstract

We carried out a wind tunnel experiment to examine the power generation efficiency of a stand-alone miniature wind turbine and its wake characteristics at different tip speed ratios (TSRs) under the same mean inflow velocity. Resistors in the electrical circuit were adjusted to control the TSRs to 0.9, 1.5, 3.0, 4.1, 5.2, and 5.9. The currents were measured to estimate the turbine power outputs versus the TSRs and then establish the actual power generation coefficient C p distribution. To calculate the mechanical power coefficient, a new estimation method of the mechanical torque constant is proposed. A reverse calibration on the blade rotation speed was performed with given electrical voltages and currents that are used to estimate the mechanical power coefficient C p, mech . In the experiment, the maximum C p,mech was approximately 0.358 (corresponding to the maximum C p of 0.212) at the TSR of 4.1. Significant findings indicate that the turbine at the TSR of 5.2 produces a smaller torque but a larger power output compared with that at the TSR of 3.0. This comparison further displays that the turbine at the TSR of 5.2, even with larger power output, still produces a turbine wake that has smaller velocity deficits and smaller turbulence intensity than that at the TSR of 3.0. This behavior demonstrates the significance of the blade-rotation control (i.e., pitch regulation) system to the turbine operation in a large wind farm for raising the overall farm power productivity.

Suggested Citation

  • Yu-Ting Wu & Chang-Yu Lin & Che-Ming Hsu, 2020. "An Experimental Investigation of Wake Characteristics and Power Generation Efficiency of a Small Wind Turbine under Different Tip Speed Ratios," Energies, MDPI, vol. 13(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2113-:d:349812
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/8/2113/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/8/2113/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yu-Ting Wu & Fernando Porté-Agel, 2012. "Atmospheric Turbulence Effects on Wind-Turbine Wakes: An LES Study," Energies, MDPI, vol. 5(12), pages 1-23, December.
    2. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics," Energies, MDPI, vol. 10(7), pages 1-19, July.
    3. Wu, Yu-Ting & Liao, Teh-Lu & Chen, Chang-Kuo & Lin, Chuan-Yao & Chen, Po-Wei, 2019. "Power output efficiency in large wind farms with different hub heights and configurations," Renewable Energy, Elsevier, vol. 132(C), pages 941-949.
    4. Dou, Bingzheng & Guala, Michele & Lei, Liping & Zeng, Pan, 2019. "Experimental investigation of the performance and wake effect of a small-scale wind turbine in a wind tunnel," Energy, Elsevier, vol. 166(C), pages 819-833.
    5. Deepu Dilip & Fernando Porté-Agel, 2017. "Wind Turbine Wake Mitigation through Blade Pitch Offset," Energies, MDPI, vol. 10(6), pages 1-17, May.
    6. Yu-Jen Chen & Y. C. Shiah, 2016. "Experiments on the Performance of Small Horizontal Axis Wind Turbine with Passive Pitch Control by Disk Pulley," Energies, MDPI, vol. 9(5), pages 1-13, May.
    7. MacPhee, David W. & Beyene, Asfaw, 2019. "Performance analysis of a small wind turbine equipped with flexible blades," Renewable Energy, Elsevier, vol. 132(C), pages 497-508.
    8. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part I: Design and Performance," Energies, MDPI, vol. 10(7), pages 1-19, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ingrid Neunaber & Michael Hölling & Martin Obligado, 2022. "Wind Tunnel Study on the Tip Speed Ratio’s Impact on a Wind Turbine Wake Development," Energies, MDPI, vol. 15(22), pages 1-15, November.
    2. Zhaobin Li & Xiaolei Yang, 2020. "Evaluation of Actuator Disk Model Relative to Actuator Surface Model for Predicting Utility-Scale Wind Turbine Wakes," Energies, MDPI, vol. 13(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Öztürk, Buğrahan & Hassanein, Abdelrahman & Akpolat, M Tuğrul & Abdulrahim, Anas & Perçin, Mustafa & Uzol, Oğuz, 2023. "On the wake characteristics of a model wind turbine and a porous disc: Effects of freestream turbulence intensity," Renewable Energy, Elsevier, vol. 212(C), pages 238-250.
    2. He, Ruiyang & Sun, Haiying & Gao, Xiaoxia & Yang, Hongxing, 2022. "Wind tunnel tests for wind turbines: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    3. Ingrid Neunaber & Michael Hölling & Richard J. A. M. Stevens & Gerard Schepers & Joachim Peinke, 2020. "Distinct Turbulent Regions in the Wake of a Wind Turbine and Their Inflow-Dependent Locations: The Creation of a Wake Map," Energies, MDPI, vol. 13(20), pages 1-20, October.
    4. Tristan Revaz & Fernando Porté-Agel, 2021. "Large-Eddy Simulation of Wind Turbine Flows: A New Evaluation of Actuator Disk Models," Energies, MDPI, vol. 14(13), pages 1-22, June.
    5. Mou Lin & Fernando Porté-Agel, 2019. "Large-Eddy Simulation of Yawed Wind-Turbine Wakes: Comparisons with Wind Tunnel Measurements and Analytical Wake Models," Energies, MDPI, vol. 12(23), pages 1-18, November.
    6. Shen, Wen Zhong & Lin, Jian Wei & Jiang, Yu Hang & Feng, Ju & Cheng, Li & Zhu, Wei Jun, 2023. "A novel yaw wake model for wind farm control applications," Renewable Energy, Elsevier, vol. 218(C).
    7. Tristan Revaz & Mou Lin & Fernando Porté-Agel, 2020. "Numerical Framework for Aerodynamic Characterization of Wind Turbine Airfoils: Application to Miniature Wind Turbine WiRE-01," Energies, MDPI, vol. 13(21), pages 1-18, October.
    8. Francesco Mazzeo & Derek Micheletto & Alessandro Talamelli & Antonio Segalini, 2022. "An Experimental Study on a Wind Turbine Rotor Affected by Pitch Imbalance," Energies, MDPI, vol. 15(22), pages 1-16, November.
    9. Dong, Xinghui & Li, Jia & Gao, Di & Zheng, Kai, 2021. "Wind speed modeling for cascade clusters of wind turbines Part 2: Wind speed reduction and aggregation superposition," Energy, Elsevier, vol. 215(PB).
    10. Bayron, Paul & Kelso, Richard & Chin, Rey, 2024. "Experimental investigation of tip-speed-ratio influence on horizontal-axis wind turbine wake dynamics," Renewable Energy, Elsevier, vol. 225(C).
    11. Daniel Houck & Edwin A. Cowen, 2022. "Power and Flow Analysis of Axial Induction Control in an Array of Model-Scale Wind Turbines," Energies, MDPI, vol. 15(15), pages 1-27, July.
    12. Yang, Xiaolei & Milliren, Christopher & Kistner, Matt & Hogg, Christopher & Marr, Jeff & Shen, Lian & Sotiropoulos, Fotis, 2021. "High-fidelity simulations and field measurements for characterizing wind fields in a utility-scale wind farm," Applied Energy, Elsevier, vol. 281(C).
    13. Rosario Lanzafame & Stefano Mauro & Michele Messina & Sebastian Brusca, 2020. "Development and Validation of CFD 2D Models for the Simulation of Micro H-Darrieus Turbines Subjected to High Boundary Layer Instabilities," Energies, MDPI, vol. 13(21), pages 1-23, October.
    14. Subbulakshmi, A. & Verma, Mohit & Keerthana, M. & Sasmal, Saptarshi & Harikrishna, P. & Kapuria, Santosh, 2022. "Recent advances in experimental and numerical methods for dynamic analysis of floating offshore wind turbines — An integrated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    15. Huilai Ren & Xiaodong Zhang & Shun Kang & Sichao Liang, 2018. "Actuator Disc Approach of Wind Turbine Wake Simulation Considering Balance of Turbulence Kinetic Energy," Energies, MDPI, vol. 12(1), pages 1-19, December.
    16. Zygmunt Szczerba & Piotr Szczerba & Kamil Szczerba & Marek Szumski & Krzysztof Pytel, 2023. "Wind Tunnel Experimental Study on the Efficiency of Vertical-Axis Wind Turbines via Analysis of Blade Pitch Angle Influence," Energies, MDPI, vol. 16(13), pages 1-21, June.
    17. Majid Bastankhah & Fernando Porté-Agel, 2017. "A New Miniature Wind Turbine for Wind Tunnel Experiments. Part II: Wake Structure and Flow Dynamics," Energies, MDPI, vol. 10(7), pages 1-19, July.
    18. De-Zhi Wei & Ni-Na Wang & De-Cheng Wan, 2021. "Modelling Yawed Wind Turbine Wakes: Extension of a Gaussian-Based Wake Model," Energies, MDPI, vol. 14(15), pages 1-26, July.
    19. Victor P. Stein & Hans-Jakob Kaltenbach, 2019. "Non-Equilibrium Scaling Applied to the Wake Evolution of a Model Scale Wind Turbine," Energies, MDPI, vol. 12(14), pages 1-24, July.
    20. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2024. "A review of physical and numerical modeling techniques for horizontal-axis wind turbine wakes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 193(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:8:p:2113-:d:349812. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.