IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i1p40-d62047.html
   My bibliography  Save this article

A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines

Author

Listed:
  • Carlos Quiterio Gómez Muñoz

    (Ingenium Research Group, Department of Business Management, University of Castilla-La Mancha, Ciudad Real 13071, Spain)

  • Fausto Pedro García Márquez

    (Ingenium Research Group, Department of Business Management, University of Castilla-La Mancha, Ciudad Real 13071, Spain)

Abstract

The renewable energy industry is undergoing continuous improvement and development worldwide, wind energy being one of the most relevant renewable energies. This industry requires high levels of reliability, availability, maintainability and safety (RAMS) for wind turbines. The blades are critical components in wind turbines. The objective of this research work is focused on the fault detection and diagnosis (FDD) of the wind turbine blades. The FDD approach is composed of a robust condition monitoring system (CMS) and a novel signal processing method. CMS collects and analyses the data from different non-destructive tests based on acoustic emission. The acoustic emission signals are collected applying macro-fiber composite (MFC) sensors to detect and locate cracks on the surface of the blades. Three MFC sensors are set in a section of a wind turbine blade. The acoustic emission signals are generated by breaking a pencil lead in the blade surface. This method is used to simulate the acoustic emission due to a breakdown of the composite fibers. The breakdown generates a set of mechanical waves that are collected by the MFC sensors. A graphical method is employed to obtain a system of non-linear equations that will be used for locating the emission source. This work demonstrates that a fiber breakage in the wind turbine blade can be detected and located by using only three low cost sensors. It allows the detection of potential failures at an early stages, and it can also reduce corrective maintenance tasks and downtimes and increase the RAMS of the wind turbine.

Suggested Citation

  • Carlos Quiterio Gómez Muñoz & Fausto Pedro García Márquez, 2016. "A New Fault Location Approach for Acoustic Emission Techniques in Wind Turbines," Energies, MDPI, vol. 9(1), pages 1-14, January.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:1:p:40-:d:62047
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/1/40/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/1/40/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Diego Pedregal & Fausto García & Clive Roberts, 2009. "An algorithmic approach for maintenance management based on advanced state space systems and harmonic regressions," Annals of Operations Research, Springer, vol. 166(1), pages 109-124, February.
    2. Fausto Pedro García Márquez & Diego J. Pedregal & Clive Roberts, 2015. "New methods for the condition monitoring of level crossings," International Journal of Systems Science, Taylor & Francis Journals, vol. 46(5), pages 878-884, April.
    3. García, Fausto P. & Pedregal, Diego J. & Roberts, Clive, 2010. "Time series methods applied to failure prediction and detection," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 698-703.
    4. Oluseyi O. Ajayi & Richard O. Fagbenle & James Katende & Julius M. Ndambuki & David O. Omole & Adekunle A. Badejo, 2014. "Wind Energy Study and Energy Cost of Wind Electricity Generation in Nigeria: Past and Recent Results and a Case Study for South West Nigeria," Energies, MDPI, vol. 7(12), pages 1-27, December.
    5. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    6. Xiao Chen & Wei Zhao & Xiao Lu Zhao & Jian Zhong Xu, 2014. "Failure Test and Finite Element Simulation of a Large Wind Turbine Composite Blade under Static Loading," Energies, MDPI, vol. 7(4), pages 1-24, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
    2. Fausto Pedro García Marquez & Carlos Quiterio Gómez Muñoz, 2020. "A New Approach for Fault Detection, Location and Diagnosis by Ultrasonic Testing," Energies, MDPI, vol. 13(5), pages 1-13, March.
    3. Huerta Herraiz, Álvaro & Pliego Marugán, Alberto & García Márquez, Fausto Pedro, 2020. "Photovoltaic plant condition monitoring using thermal images analysis by convolutional neural network-based structure," Renewable Energy, Elsevier, vol. 153(C), pages 334-348.
    4. Arcos Jiménez, Alfredo & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2019. "Dirt and mud detection and diagnosis on a wind turbine blade employing guided waves and supervised learning classifiers," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 2-12.
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Fausto Pedro García Márquez & Alberto Pliego Marugán & Jesús María Pinar Pérez & Stuart Hillmansen & Mayorkinos Papaelias, 2017. "Optimal Dynamic Analysis of Electrical/Electronic Components in Wind Turbines," Energies, MDPI, vol. 10(8), pages 1-19, July.
    7. Arcos Jiménez, Alfredo & Zhang, Long & Gómez Muñoz, Carlos Quiterio & García Márquez, Fausto Pedro, 2020. "Maintenance management based on Machine Learning and nonlinear features in wind turbines," Renewable Energy, Elsevier, vol. 146(C), pages 316-328.
    8. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Ignatius Kema Okakwu & Olakunle Elijah Olabode & Akintunde Samson Alayande & Tobiloba Emmanuel Somefun & Titus Oluwasuji Ajewole, 2021. "Techno-Economic Assessment of Wind Turbines in Nigeria," International Journal of Energy Economics and Policy, Econjournals, vol. 11(2), pages 240-246.
    10. Caputo, Antonio C. & Federici, Alessandro & Pelagagge, Pacifico M. & Salini, Paolo, 2023. "Offshore wind power system economic evaluation framework under aleatory and epistemic uncertainty," Applied Energy, Elsevier, vol. 350(C).
    11. Wasiu Olalekan Idris & Mohd Zamri Ibrahim & Aliashim Albani, 2020. "The Status of the Development of Wind Energy in Nigeria," Energies, MDPI, vol. 13(23), pages 1-16, November.
    12. Brimmo, Ayoola T. & Sodiq, Ahmed & Sofela, Samuel & Kolo, Isa, 2017. "Sustainable energy development in Nigeria: Wind, hydropower, geothermal and nuclear (Vol. 1)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 474-490.
    13. Tan, Tu Guang & Jang, Sunghyon & Yamaguchi, Akira, 2019. "A novel method for risk-informed decision-making under non-ideal Instrumentation and Control conditions through the application of Bayes’ Theorem," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 463-472.
    14. Márquez, Fausto Pedro García & Pérez, Jesús María Pinar & Marugán, Alberto Pliego & Papaelias, Mayorkinos, 2016. "Identification of critical components of wind turbines using FTA over the time," Renewable Energy, Elsevier, vol. 87(P2), pages 869-883.
    15. Jianhua Xu & Zhonghua Han & Xiaochao Yan & Wenping Song, 2019. "Design Optimization of a Multi-Megawatt Wind Turbine Blade with the NPU-MWA Airfoil Family," Energies, MDPI, vol. 12(17), pages 1-24, August.
    16. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    17. Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
    18. Narender Singh & Dibakor Boruah & Jeroen D. M. De Kooning & Wim De Waele & Lieven Vandevelde, 2023. "Impact Assessment of Dynamic Loading Induced by the Provision of Frequency Containment Reserve on the Main Bearing Lifetime of a Wind Turbine," Energies, MDPI, vol. 16(6), pages 1-14, March.
    19. Pliego Marugán, Alberto & García Márquez, Fausto Pedro & Pinar Pérez, Jesús María, 2022. "A techno-economic model for avoiding conflicts of interest between owners of offshore wind farms and maintenance suppliers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    20. Boadu, Solomon & Otoo, Ebenezer, 2024. "A comprehensive review on wind energy in Africa: Challenges, benefits and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:1:p:40-:d:62047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.