IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i5p4216-4236d49395.html
   My bibliography  Save this article

3-D CFD Modeling for Parametric Study in a 300-MWe One-Stage Oxygen-Blown Entrained-Bed Coal Gasifier

Author

Listed:
  • Sang Shin Park

    (Department of Mechanical Engineering, Yonsei University, Seoul 120-749, Korea)

  • Hyo Jae Jeong

    (Department of Mechanical Engineering, Yonsei University, Seoul 120-749, Korea)

  • Jungho Hwang

    (Department of Mechanical Engineering, Yonsei University, Seoul 120-749, Korea)

Abstract

Three-dimensional computational fluid dynamics (CFD) modeling of the gasification performance in a one-stage, entrained-bed coal gasifier (Shell Coal Gasification Process (SCGP) gasifier) was performed, for the first time. The parametric study used various O 2 /coal and steam/coal ratios, and the modeling used a commercial code, ANSYS FLUENT. CFD modeling was conducted by solving the steady-state Navier–Stokes and energy equations using the Eulerian–Lagrangian method. Gas-phase chemical reactions were solved with the Finite–Rate/Eddy–Dissipation Model. The CFD model was verified with actual operating data of Demkolec demo Integrated Gasification Combined Cycle (IGCC) facility in Netherlands that used Drayton coal. For Illinois #6 coal, the CFD model was compared with ASPEN Plus results reported in National Energy Technology Laboratory (NETL). For design coal used in the SCGP gasifier in Korea, carbon conversion efficiency, cold gas efficiency, temperature, and species mole fractions at the gasifier exit were calculated and the results were compared with those obtained by using ASPEN Plus-Kinetic. The optimal O 2 /coal and steam/coal ratios were 0.7 and 0.05, respectively, for the selected operating conditions.

Suggested Citation

  • Sang Shin Park & Hyo Jae Jeong & Jungho Hwang, 2015. "3-D CFD Modeling for Parametric Study in a 300-MWe One-Stage Oxygen-Blown Entrained-Bed Coal Gasifier," Energies, MDPI, vol. 8(5), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:4216-4236:d:49395
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/5/4216/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/5/4216/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    2. Lee, Hyeon-Hui & Lee, Jae-Chul & Joo, Yong-Jin & Oh, Min & Lee, Chang-Ha, 2014. "Dynamic modeling of Shell entrained flow gasifier in an integrated gasification combined cycle process," Applied Energy, Elsevier, vol. 131(C), pages 425-440.
    3. Jeong, Hyo Jae & Seo, Dong Kyun & Hwang, Jungho, 2014. "CFD modeling for coal size effect on coal gasification in a two-stage commercial entrained-bed gasifier with an improved char gasification model," Applied Energy, Elsevier, vol. 123(C), pages 29-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nancy Eloísa Rodríguez-Olalde & Erick Alejandro Mendoza-Chávez & Agustín Jaime Castro-Montoya & Jaime Saucedo-Luna & Rafael Maya-Yescas & José Guadalupe Rutiaga-Quiñones & José María Ponce Ortega, 2015. "Simulation of Syngas Production from Lignin Using Guaiacol as a Model Compound," Energies, MDPI, vol. 8(7), pages 1-10, June.
    2. Fang, Neng & Li, Zhengqi & Liu, Shuxuan & Xie, Cheng & Zeng, Lingyan & Chen, Zhichao, 2021. "Experimental air/particle flow characteristics of an 80,000 Nm3/h fly ash entrained-flow gasifier with different multi-burner arrangements," Energy, Elsevier, vol. 215(PB).
    3. Ismail, Tamer M. & Ramos, Ana & Monteiro, Eliseu & El-Salam, M. Abd & Rouboa, Abel, 2020. "Parametric studies in the gasification agent and fluidization velocity during oxygen-enriched gasification of biomass in a pilot-scale fluidized bed: Experimental and numerical assessment," Renewable Energy, Elsevier, vol. 147(P1), pages 2429-2439.
    4. Fang, Neng & Li, Zhengqi & Wang, Jiaquan & Zhang, Bin & Zeng, Lingyan & Chen, Zhichao & Wang, Haopeng & Liu, Xiaoying & Zhang, Xiaoyan, 2018. "Experimental investigations on air/particle flow characteristics in a 2000 t/d GSP pulverized coal gasifier with an improved burner," Energy, Elsevier, vol. 165(PB), pages 432-441.
    5. Ramos, Ana & Monteiro, Eliseu & Rouboa, Abel, 2019. "Numerical approaches and comprehensive models for gasification process: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 188-206.
    6. Kim, Taewoo & Park, So Dam & Lee, Uen Do & Park, Byeong Cheol & Park, Kyoung Il & Hong, Jongsup, 2021. "Thermodynamic analysis of the 2nd generation pressurized fluidized-bed combustion cycle utilizing an oxy-coal boiler and a gasifier," Energy, Elsevier, vol. 236(C).
    7. Jakub Mularski & Norbert Modliński, 2020. "Impact of Chemistry–Turbulence Interaction Modeling Approach on the CFD Simulations of Entrained Flow Coal Gasification," Energies, MDPI, vol. 13(23), pages 1-25, December.
    8. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).
    9. Kim, Mukyeong & Ye, Insoo & Jo, Hyunbin & Ryu, Changkook & Kim, Bongkeun & Lee, Jeongsoo, 2020. "New reduced-order model optimized for online dynamic simulation of a Shell coal gasifier," Applied Energy, Elsevier, vol. 263(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pilar Lopez-Llompart & G. Mathias Kondolf, 2016. "Encroachments in floodways of the Mississippi River and Tributaries Project," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(1), pages 513-542, March.
    2. Michelle Sheran Sylvester, 2007. "The Career and Family Choices of Women: A Dynamic Analysis of Labor Force Participation, Schooling, Marriage and Fertility Decisions," Review of Economic Dynamics, Elsevier for the Society for Economic Dynamics, vol. 10(3), pages 367-399, July.
    3. DAVID M. BLAU & WILBERT van der KLAAUW, 2013. "What Determines Family Structure?," Economic Inquiry, Western Economic Association International, vol. 51(1), pages 579-604, January.
    4. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    5. Peter Viggo Jakobsen, 2009. "Small States, Big Influence: The Overlooked Nordic Influence on the Civilian ESDP," Journal of Common Market Studies, Wiley Blackwell, vol. 47(1), pages 81-102, January.
    6. Billio, Monica & Casarin, Roberto & Osuntuyi, Anthony, 2016. "Efficient Gibbs sampling for Markov switching GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 37-57.
    7. Jan Babecký & Fabrizio Coricelli & Roman Horváth, 2009. "Assessing Inflation Persistence: Micro Evidence on an Inflation Targeting Economy," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 59(2), pages 102-127, June.
    8. Lloyd, S. P., 2017. "Unconventional Monetary Policy and the Interest Rate Channel: Signalling and Portfolio Rebalancing," Cambridge Working Papers in Economics 1735, Faculty of Economics, University of Cambridge.
    9. Ichiro Fukunaga, 2007. "Imperfect Common Knowledge, Staggered Price Setting, and the Effects of Monetary Policy," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 39(7), pages 1711-1739, October.
    10. Albertazzi, Ugo & Gambacorta, Leonardo, 2009. "Bank profitability and the business cycle," Journal of Financial Stability, Elsevier, vol. 5(4), pages 393-409, December.
    11. Beck, Thorsten & Demirgüç-Kunt, Asli & Merrouche, Ouarda, 2013. "Islamic vs. conventional banking: Business model, efficiency and stability," Journal of Banking & Finance, Elsevier, vol. 37(2), pages 433-447.
    12. Jinho Bae & Chang-Jin Kim & Dong Kim, 2012. "The evolution of the monetary policy regimes in the U.S," Empirical Economics, Springer, vol. 43(2), pages 617-649, October.
    13. McMahon, Rob, 2020. "Co-developing digital inclusion policy and programming with indigenous partners: Interventions from Canada," Internet Policy Review: Journal on Internet Regulation, Alexander von Humboldt Institute for Internet and Society (HIIG), Berlin, vol. 9(2), pages 1-26.
    14. George W. Evans & Seppo Honkapohja, 2009. "Robust Learning Stability with Operational Monetary Policy Rules," Central Banking, Analysis, and Economic Policies Book Series, in: Klaus Schmidt-Hebbel & Carl E. Walsh & Norman Loayza (Series Editor) & Klaus Schmidt-Hebbel (Series (ed.),Monetary Policy under Uncertainty and Learning, edition 1, volume 13, chapter 5, pages 145-170, Central Bank of Chile.
    15. Lehtonen, Heikki & Kujala, Sanna, 2007. "Climate change impacts on crop risks and agricultural production in Finland," 101st Seminar, July 5-6, 2007, Berlin Germany 9259, European Association of Agricultural Economists.
    16. Michael Pomerleano, 2011. "Developing Regional Financial Markets – the Case of East Asia," Chapters, in: Ulrich Volz (ed.), Regional Integration, Economic Development and Global Governance, chapter 9, Edward Elgar Publishing.
    17. Gary Charness & Francesco Feri & Miguel A. Meléndez-Jiménez & Matthias Sutter, 2023. "An Experimental Study on the Effects of Communication, Credibility, and Clustering in Network Games," The Review of Economics and Statistics, MIT Press, vol. 105(6), pages 1530-1543, November.
    18. Kitsul, Yuriy & Wright, Jonathan H., 2013. "The economics of options-implied inflation probability density functions," Journal of Financial Economics, Elsevier, vol. 110(3), pages 696-711.
    19. Dieter Balkenborg & Rosemarie Nagel, 2016. "An Experiment on Forward vs. Backward Induction: How Fairness and Level k Reasoning Matter," German Economic Review, Verein für Socialpolitik, vol. 17(3), pages 378-408, August.
    20. J. Park & T. P. Seager & P. S. C. Rao & M. Convertino & I. Linkov, 2013. "Integrating Risk and Resilience Approaches to Catastrophe Management in Engineering Systems," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 356-367, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:4216-4236:d:49395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.