IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i3p348-d92823.html
   My bibliography  Save this article

Detoxification of a Lignocellulosic Waste from a Pulp Mill to Enhance Its Fermentation Prospects

Author

Listed:
  • Tamara Llano

    (Green Engineering and Resources Research Group ( www.geruc.es ), Department of Chemistry and Process and Resource Engineering, University of Cantabria (UC), 39005 Santander, Cantabria, Spain)

  • Natalia Quijorna

    (Green Engineering and Resources Research Group ( www.geruc.es ), Department of Chemistry and Process and Resource Engineering, University of Cantabria (UC), 39005 Santander, Cantabria, Spain)

  • Alberto Coz

    (Green Engineering and Resources Research Group ( www.geruc.es ), Department of Chemistry and Process and Resource Engineering, University of Cantabria (UC), 39005 Santander, Cantabria, Spain)

Abstract

Detoxification is required for sugar bioconversion and hydrolyzate valorization within the biorefining concept for biofuel or bio-product production. In this work, the spent sulfite liquor, which is the main residue provided from a pulp mill, has been detoxified. Evaporation, overliming, ionic exchange resins, and adsorption with activated carbon or black carbon were considered to separate the sugars from the inhibitors in the lignocellulosic residue. Effectiveness in terms of total and individual inhibitor removals, sugar losses and sugar-to-inhibitor removal ratio was determined. The best results were found using the cation exchange Dowex 50WX2 resin in series with the anion exchange Amberlite IRA-96 resin, which resulted in sugar losses of 24.2% with inhibitor removal of 71.3% of lignosulfonates, 84.8% of phenolics, 82.2% acetic acid, and 100% of furfurals. Apart from exchange resins, the results of evaporation, overliming, adsorption with activated carbon and adsorption with black carbon led to total inhibitor removals of 8.6%, 44.9%, 33.6% and 47.6%, respectively. Finally, some fermentation scenarios were proposed in order to evaluate the most suitable technique or combination of techniques that should be implemented in every case.

Suggested Citation

  • Tamara Llano & Natalia Quijorna & Alberto Coz, 2017. "Detoxification of a Lignocellulosic Waste from a Pulp Mill to Enhance Its Fermentation Prospects," Energies, MDPI, vol. 10(3), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:348-:d:92823
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/3/348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/3/348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stavros Afionis & Lindsay C. Stringer & Nicola Favretto & Julia Tomei & Marcos S. Buckeridge, 2016. "Unpacking Brazil’s Leadership in the Global Biofuels Arena: Brazilian Ethanol Diplomacy in Africa," Global Environmental Politics, MIT Press, vol. 16(3), pages 127-150, August.
    2. Päivi Ylitervo & Carl Johan Franzén & Mohammad J. Taherzadeh, 2013. "Impact of Furfural on Rapid Ethanol Production Using a Membrane Bioreactor," Energies, MDPI, vol. 6(3), pages 1-14, March.
    3. Lili Zhao & Xiliang Zhang & Jie Xu & Xunmin Ou & Shiyan Chang & Maorong Wu, 2015. "Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover," Energies, MDPI, vol. 8(5), pages 1-22, May.
    4. Poritosh Roy & Animesh Dutta & Bill Deen, 2015. "An Approach to Identify the Suitable Plant Location for Miscanthus -Based Ethanol Industry: A Case Study in Ontario, Canada," Energies, MDPI, vol. 8(9), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Wang & Yanyou Wu & Deke Xing & Hongtao Hang & Xiaolin Xie & Xiuqun Yang & Kaiyan Zhang & Sen Rao, 2017. "Biomass Production of Three Biofuel Energy Plants’ Use of a New Carbon Resource by Carbonic Anhydrase in Simulated Karst Soils: Mechanism and Capacity," Energies, MDPI, vol. 10(9), pages 1-14, September.
    2. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    3. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    4. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    5. Marie Dejonghe, 2023. "Risky Business? Evaluating Hydrogen Partnerships Established by Germany, The Netherlands, and Belgium," Sustainability, MDPI, vol. 15(24), pages 1-15, December.
    6. Alessandro Sopegno & Efthymios Rodias & Dionysis Bochtis & Patrizia Busato & Remigio Berruto & Valter Boero & Claus Sørensen, 2016. "Model for Energy Analysis of Miscanthus Production and Transportation," Energies, MDPI, vol. 9(6), pages 1-16, May.
    7. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    8. Ong, Victor Zhenquan & Wu, Ta Yeong, 2020. "An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    9. Zhao, Xuebing & Liu, Dehua, 2019. "Multi-products co-production improves the economic feasibility of cellulosic ethanol: A case of Formiline pretreatment-based biorefining," Applied Energy, Elsevier, vol. 250(C), pages 229-244.
    10. Sylvia Haus & Lovisa Björnsson & Pål Börjesson, 2020. "Lignocellulosic Ethanol in a Greenhouse Gas Emission Reduction Obligation System—A Case Study of Swedish Sawdust Based-Ethanol Production," Energies, MDPI, vol. 13(5), pages 1-15, February.
    11. Puengprasert, Punika & Chalobol, Tanida & Sinbuathong, Nusara & Srinophakhun, Penjit & Thanapimmetha, Anusith & Liu, Chen-Guang & Zhao, Xin-Qing & Sakdaronnarong, Chularat, 2020. "A combined cellulosic and starchy ethanol and biomethane production with stillage recycle and respective cost analysis," Renewable Energy, Elsevier, vol. 157(C), pages 444-455.
    12. Roy, Poritosh & Dutta, Animesh & Gallant, Jim, 2020. "Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    13. Yu, Jianming & Chen, Sitong & Yu, Yang & Zhang, Chengcheng & Jin, Mingjie, 2024. "Influence of feedstock selection on cellulosic ethanol production based on densified biomass with calcium hydroxide and regular steam pretreatment," Renewable Energy, Elsevier, vol. 227(C).
    14. Henri Bezuidenhout & Gabriel Mhonyera & Jacob Van Rensburg & Hsia Hua Sheng & José Marcos Carrera & Xinjian Cui, 2021. "Emerging Market Global Players: The Case of Brazil, China and South Africa," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    15. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
    16. Zhao, Lili & Ou, Xunmin & Chang, Shiyan, 2016. "Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: Current perspectives and future prospectives," Energy, Elsevier, vol. 115(P1), pages 303-313.
    17. Manoj Kandasamy & Ihsan Hamawand & Leslie Bowtell & Saman Seneweera & Sayan Chakrabarty & Talal Yusaf & Zaidoon Shakoor & Sattar Algayyim & Friederike Eberhard, 2017. "Investigation of Ethanol Production Potential from Lignocellulosic Material without Enzymatic Hydrolysis Using the Ultrasound Technique," Energies, MDPI, vol. 10(1), pages 1-12, January.
    18. Olga V. Panina & Anna A. Bakulina & Lyubov A. Ploticyna & Natalia L. Krasyukova, 2020. "BRICS on the African Energy Market: Current Situation and Prospects for Mutual Cooperation," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 93-101.
    19. Poveda-Giraldo, Jhonny Alejandro & Solarte-Toro, Juan Camilo & Cardona Alzate, Carlos Ariel, 2021. "The potential use of lignin as a platform product in biorefineries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    20. Jenkins, Timothy L. & Jin, Enze & Sutherland, John W., 2020. "Effect of harvest region shape, biomass yield, and plant location on optimal biofuel facility size," Forest Policy and Economics, Elsevier, vol. 111(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:348-:d:92823. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.