IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i4p2575-2586d47531.html
   My bibliography  Save this article

Second Generation Ethanol Production from Brewers’ Spent Grain

Author

Listed:
  • Rossana Liguori

    (Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 480126 Naples, Italy)

  • Carlos Ricardo Soccol

    (Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 210, 81531-980 Curitiba, Brazil)

  • Luciana Porto de Souza Vandenberghe

    (Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 210, 81531-980 Curitiba, Brazil)

  • Adenise Lorenci Woiciechowski

    (Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Coronel Francisco H. dos Santos Avenue, 210, 81531-980 Curitiba, Brazil)

  • Vincenza Faraco

    (Department of Chemical Sciences, University of Naples "Federico II", Complesso Universitario Monte S. Angelo, via Cintia, 480126 Naples, Italy)

Abstract

Ethanol production from lignocellulosic biomasses raises a global interest because it represents a good alternative to petroleum-derived energies and reduces the food versus fuel conflict generated by first generation ethanol. In this study, alkaline-acid pretreated brewers’ spent grain (BSG) was evaluated for ethanol production after enzymatic hydrolysis with commercial enzymes. The obtained hydrolysate containing a glucose concentration of 75 g/L was adopted, after dilution up to 50 g/L, for fermentation by the strain Saccharomyces cerevisiae NRRL YB 2293 selected as the best producer among five ethanologenic microorganims. When the hydrolysate was supplemented with yeast extract, 12.79 g/L of ethanol, corresponding to 0.28 g of ethanol per grams of glucose consumed (55% efficiency), was obtained within 24 h, while in the non-supplemented hydrolysate, a similar concentration was reached within 48 h. The volumetric productivity increased from 0.25 g/L·h in the un-supplemented hydrolysate to 0.53 g/L h in the yeast extract supplemented hydrolysate. In conclusion, the strain S. cerevisiae NRRL YB 2293 was shown able to produce ethanol from BSG. Although an equal amount of ethanol was reached in both BSG hydrolysate media, the nitrogen source supplementation reduced the ethanol fermentation time and promoted glucose uptake and cell growth.

Suggested Citation

  • Rossana Liguori & Carlos Ricardo Soccol & Luciana Porto de Souza Vandenberghe & Adenise Lorenci Woiciechowski & Vincenza Faraco, 2015. "Second Generation Ethanol Production from Brewers’ Spent Grain," Energies, MDPI, vol. 8(4), pages 1-12, March.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2575-2586:d:47531
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/4/2575/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/4/2575/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Pimentel & Alison Marklein & Megan A. Toth & Marissa Karpoff & Gillian S. Paul & Robert McCormack & Joanna Kyriazis & Tim Krueger, 2008. "Biofuel Impacts on World Food Supply: Use of Fossil Fuel, Land and Water Resources," Energies, MDPI, vol. 1(2), pages 1-38, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rossana Liguori & Anna Pennacchio & Luciana Porto de Souza Vandenberghe & Addolorata De Chiaro & Leila Birolo & Carlos Ricardo Soccol & Vincenza Faraco, 2021. "Screening of Fungal Strains for Cellulolytic and Xylanolytic Activities Production and Evaluation of Brewers’ Spent Grain as Substrate for Enzyme Production by Selected Fungi," Energies, MDPI, vol. 14(15), pages 1-17, July.
    2. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    3. Mateusz Jackowski & Łukasz Niedźwiecki & Krzysztof Mościcki & Amit Arora & Muhammad Azam Saeed & Krystian Krochmalny & Jakub Pawliczek & Anna Trusek & Magdalena Lech & Jan Skřínský & Jakub Čespiva & J, 2021. "Synergetic Co-Production of Beer Colouring Agent and Solid Fuel from Brewers’ Spent Grain in the Circular Economy Perspective," Sustainability, MDPI, vol. 13(18), pages 1-17, September.
    4. Sahar Safarian & Runar Unnthorsson, 2018. "An Assessment of the Sustainability of Lignocellulosic Bioethanol Production from Wastes in Iceland," Energies, MDPI, vol. 11(6), pages 1-16, June.
    5. Mateusz Jackowski & Lukasz Niedzwiecki & Magdalena Lech & Mateusz Wnukowski & Amit Arora & Monika Tkaczuk-Serafin & Marcin Baranowski & Krystian Krochmalny & Vivek K. Veetil & Przemysław Seruga & Anna, 2020. "HTC of Wet Residues of the Brewing Process: Comprehensive Characterization of Produced Beer, Spent Grain and Valorized Residues," Energies, MDPI, vol. 13(8), pages 1-20, April.
    6. Abdi Hanra Sebayang & Masjuki Haji Hassan & Hwai Chyuan Ong & Surya Dharma & Arridina Susan Silitonga & Fitranto Kusumo & Teuku Meurah Indra Mahlia & Aditiya Harjon Bahar, 2017. "Optimization of Reducing Sugar Production from Manihot glaziovii Starch Using Response Surface Methodology," Energies, MDPI, vol. 10(1), pages 1-13, January.
    7. Sofía Sampaolesi & Laura Estefanía Briand & Mario Carlos Nazareno Saparrat & María Victoria Toledo, 2023. "Potentials of Biomass Waste Valorization: Case of South America," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    8. Sahar Safarian & Seyed Mohammad Ebrahimi Saryazdi & Runar Unnthorsson & Christiaan Richter, 2021. "Artificial Neural Network Modeling of Bioethanol Production Via Syngas Fermentation," Biophysical Economics and Resource Quality, Springer, vol. 6(1), pages 1-13, March.
    9. Wagner, Evelyn & Sierra-Ibarra, Estefanía & Rojas, Natalia L. & Martinez, Alfredo, 2022. "One-pot bioethanol production from brewery spent grain using the ethanologenic Escherichia coli MS04," Renewable Energy, Elsevier, vol. 189(C), pages 717-725.
    10. Vitor B. Furlong & Luciano J. Corrêa & Roberto C. Giordano & Marcelo P. A. Ribeiro, 2019. "Fuzzy-Enhanced Modeling of Lignocellulosic Biomass Enzymatic Saccharification," Energies, MDPI, vol. 12(11), pages 1-17, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ribeiro, Barbara Esteves, 2013. "Beyond commonplace biofuels: Social aspects of ethanol," Energy Policy, Elsevier, vol. 57(C), pages 355-362.
    2. Katerina Zdravkova, 2023. "Personalized Education for Sustainable Development," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    3. Ohimain, Elijah I., 2013. "Can the Nigerian biofuel policy and incentives (2007) transform Nigeria into a biofuel economy?," Energy Policy, Elsevier, vol. 54(C), pages 352-359.
    4. Bai, Attila & Durkó, Emília & Tar, Károly & Tóth, József Barnabás & Lázár, István & Kapocska, László & Kircsi, Andrea & Bartók, Blanka & Vass, Róbert & Pénzes, János & Tóth, Tamás, 2016. "Social and economic possibilities for the energy utilization of fitomass in the valley of the river Hernád," Renewable Energy, Elsevier, vol. 85(C), pages 777-789.
    5. Balogh, P. & Bai, A. & Popp, J. & Huzsvai, L. & Jobbágy, P., 2015. "Internet-orientated Hungarian car drivers’ knowledge and attitudes towards biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 17-26.
    6. Edeseyi, Margaret E. & Kaita, Aminu Y. & Harun, Razif & Danquah, Michael K. & Acquah, Caleb & Sia, Joseph Kee Ming, 2015. "Rethinking sustainable biofuel marketing to titivate commercial interests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 781-792.
    7. de Castro, Carlos & Carpintero, Óscar & Frechoso, Fernando & Mediavilla, Margarita & de Miguel, Luis J., 2014. "A top-down approach to assess physical and ecological limits of biofuels," Energy, Elsevier, vol. 64(C), pages 506-512.
    8. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    9. Unesco Unesco, 2015. "Water for a Sustainable World," Working Papers id:6657, eSocialSciences.
    10. Leisha Vance & Stephen Boss, 2012. "The Campus Demotechnic Index: a comparison of technological energy consumption at US colleges and universities," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(1), pages 111-134, February.
    11. Glithero, N. J. & Ramsden, S. J. & Wilson, P., 2013. "Potential for Second Generation Biofuel Feedstock from English Arable Farms," 87th Annual Conference, April 8-10, 2013, Warwick University, Coventry, UK 158858, Agricultural Economics Society.
    12. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    13. Iye, Edward & Bilsborrow, Paul, 2013. "Cellulosic ethanol production from agricultural residues in Nigeria," Energy Policy, Elsevier, vol. 63(C), pages 207-214.
    14. Shima, Mst. Urmi Akter & Hasan, Mohammad Monirul, 2022. "Temporal mapping of vegetation cover change in Gazipur district, Bangladesh: a framework for environmental sustainability," MPRA Paper 119867, University Library of Munich, Germany, revised 14 Aug 2022.
    15. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    16. Yeboah, Anthony K. & Naanwaab, Cephas B. & Yeboah, Osei-Agyeman & Owens, John Paul & Bynum, Jarvetta S., 2013. "Economic Feasibility of Sustainable High Oilseed-Based Biofuel Production: The Case for Biodiesel in North Carolina," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 16(1), pages 1-26, February.
    17. Faraco, Vincenza & Hadar, Yitzhak, 2011. "The potential of lignocellulosic ethanol production in the Mediterranean Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 252-266, January.
    18. repec:bla:afrdev:v:29:y:2017:i:s2:p:78-95 is not listed on IDEAS
    19. Jessica Zhang & Sarah Palmer & David Pimentel, 2012. "Energy production from corn," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(2), pages 221-231, April.
    20. Athinarayanan Balasankar & Sathya Elango Arthiya & Subramaniyan Ramasundaram & Paramasivam Sumathi & Selvaraj Arokiyaraj & Taehwan Oh & Kanakaraj Aruchamy & Ganesan Sriram & Mahaveer D. Kurkuri, 2022. "Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries," Energies, MDPI, vol. 15(24), pages 1-16, December.
    21. Lior, Noam, 2010. "Sustainable energy development: The present (2009) situation and possible paths to the future," Energy, Elsevier, vol. 35(10), pages 3976-3994.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:4:p:2575-2586:d:47531. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.