IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i24p9495-d1003608.html
   My bibliography  Save this article

Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries

Author

Listed:
  • Athinarayanan Balasankar

    (Department of Physics, Gobi Arts & Science College, Gobichettipalayam, Erode 638 453, Tamilnadu, India)

  • Sathya Elango Arthiya

    (Centre for Nano Sciences & Technology, Madanjeet School of Green Energy Technologies, Pondicherry University (A Central University), Puducherry 605 014, India)

  • Subramaniyan Ramasundaram

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea)

  • Paramasivam Sumathi

    (Department of Chemistry, Gobi Arts & Science College, Gobichettipalayam, Erode 638 453, Tamilnadu, India)

  • Selvaraj Arokiyaraj

    (Department of Food Science & Biotechnology, Sejong University, Seoul 05006, Republic of Korea)

  • Taehwan Oh

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea)

  • Kanakaraj Aruchamy

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea)

  • Ganesan Sriram

    (School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea)

  • Mahaveer D. Kurkuri

    (Centre for Research in Functional Materials (CRFM), Jain Global Campus, JAIN University, Bengaluru 562112, Karnataka, India)

Abstract

Sodium-ion batteries (SIBs) are among the most cost-effective and environmentally benign electrical energy storage devices required to match the needs of commercialized stationary and automotive applications. Because of its excellent chemical characteristics, infinite abundance, and low cost, the SIB is an excellent technology for grid energy storage compared with others. When used as anodes, titanium compounds based on the Ti 4+ /Ti 3+ redox couple have a potential of typically 0.5–1.0 V, which is far from the potential of dangerous sodium plating (0.0–0.1 V). This ensures the operational safety of large-scale SIBs. Low lattice strain, usually associated with Ti-based materials, is also helpful for the longevity of the cycling of SIBs. Numerous Ti-based anode materials are being developed for use in SIBs. In particular, due to adequate electrode–electrolyte interaction and rapid charge transportation, hierarchical porous (HP) Ti-based anode materials were reported as having high specific capacity, current density, and cycling stability. HPTi-based anode materials for SIBs have the potential to be used in automobiles and portable, flexible, and wearable electronic devices. This review addresses recent developments in HPTiO 2 -based SIBs and their preparation, properties, performance, and challenges.

Suggested Citation

  • Athinarayanan Balasankar & Sathya Elango Arthiya & Subramaniyan Ramasundaram & Paramasivam Sumathi & Selvaraj Arokiyaraj & Taehwan Oh & Kanakaraj Aruchamy & Ganesan Sriram & Mahaveer D. Kurkuri, 2022. "Recent Advances in the Preparation and Performance of Porous Titanium-Based Anode Materials for Sodium-Ion Batteries," Energies, MDPI, vol. 15(24), pages 1-16, December.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9495-:d:1003608
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/24/9495/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/24/9495/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Pimentel & Alison Marklein & Megan A. Toth & Marissa Karpoff & Gillian S. Paul & Robert McCormack & Joanna Kyriazis & Tim Krueger, 2008. "Biofuel Impacts on World Food Supply: Use of Fossil Fuel, Land and Water Resources," Energies, MDPI, vol. 1(2), pages 1-38, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Emanuele Fedele & Luigi Pio Di Noia & Renato Rizzo, 2023. "Simple Loss Model of Battery Cables for Fast Transient Thermal Simulation," Energies, MDPI, vol. 16(7), pages 1-13, March.
    2. Vediyappan Thirumal & T. V. M. Sreekanth & Kisoo Yoo & Jinho Kim, 2023. "Biomass-Derived Hard Carbon and Nitrogen-Sulfur Co-Doped Graphene for High-Performance Symmetric Sodium Ion Capacitor Devices," Energies, MDPI, vol. 16(2), pages 1-22, January.
    3. Feng Guo & Jian Li & Chi Zhang & Yizhi Zhu & Caiyang Yu & Qingsong Wang & Giuseppe Buja, 2023. "Optimized Power and Capacity Configuration Strategy of a Grid-Side Energy Storage System for Peak Regulation," Energies, MDPI, vol. 16(15), pages 1-13, July.
    4. Kanakaraj Aruchamy & Athinarayanan Balasankar & Subramaniyan Ramasundaram & Tae Hwan Oh, 2023. "Recent Design and Synthesis Strategies for High-Performance Supercapacitors Utilizing ZnCo 2 O 4 -Based Electrode Materials," Energies, MDPI, vol. 16(15), pages 1-36, July.
    5. Marcin Palewicz & Andrzej Sikora & Tomasz Piasecki & Ewelina Gacka & Paweł Nitschke & Paweł Gnida & Bożena Jarząbek & Teodor Gotszalk, 2023. "Determination of the Electrical Parameters of Iodine-Doped Polymer Solar Cells at the Macro- and Nanoscale for Indoor Applications," Energies, MDPI, vol. 16(12), pages 1-14, June.
    6. James Chilver-Stainer & Anas F. A. Elbarghthi & Chuang Wen & Mi Tian, 2023. "Power Output Optimisation via Arranging Gas Flow Channels for Low-Temperature Polymer Electrolyte Membrane Fuel Cell (PEMFC) for Hydrogen-Powered Vehicles," Energies, MDPI, vol. 16(9), pages 1-18, April.
    7. Qi Liang & Peirong Li & Yue Zhao & Supeng Chen & Jixiang Yin & Yingchun Lyu & Qiang Li & Qinghao Li, 2023. "Investigation on the Origin of Sluggish Anionic Redox Kinetics in Cation-Disordered Cathode," Energies, MDPI, vol. 16(18), pages 1-12, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rossana Liguori & Carlos Ricardo Soccol & Luciana Porto de Souza Vandenberghe & Adenise Lorenci Woiciechowski & Vincenza Faraco, 2015. "Second Generation Ethanol Production from Brewers’ Spent Grain," Energies, MDPI, vol. 8(4), pages 1-12, March.
    2. Ramachandran, K. & Suganya, T. & Nagendra Gandhi, N. & Renganathan, S., 2013. "Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 410-418.
    3. Iye, Edward & Bilsborrow, Paul, 2013. "Cellulosic ethanol production from agricultural residues in Nigeria," Energy Policy, Elsevier, vol. 63(C), pages 207-214.
    4. Shima, Mst. Urmi Akter & Hasan, Mohammad Monirul, 2022. "Temporal mapping of vegetation cover change in Gazipur district, Bangladesh: a framework for environmental sustainability," MPRA Paper 119867, University Library of Munich, Germany, revised 14 Aug 2022.
    5. Balat, Mustafa & Balat, Havva, 2010. "Progress in biodiesel processing," Applied Energy, Elsevier, vol. 87(6), pages 1815-1835, June.
    6. Ribeiro, Barbara Esteves, 2013. "Beyond commonplace biofuels: Social aspects of ethanol," Energy Policy, Elsevier, vol. 57(C), pages 355-362.
    7. Katerina Zdravkova, 2023. "Personalized Education for Sustainable Development," Sustainability, MDPI, vol. 15(8), pages 1-13, April.
    8. Ohimain, Elijah I., 2013. "Can the Nigerian biofuel policy and incentives (2007) transform Nigeria into a biofuel economy?," Energy Policy, Elsevier, vol. 54(C), pages 352-359.
    9. Yeboah, Anthony K. & Naanwaab, Cephas B. & Yeboah, Osei-Agyeman & Owens, John Paul & Bynum, Jarvetta S., 2013. "Economic Feasibility of Sustainable High Oilseed-Based Biofuel Production: The Case for Biodiesel in North Carolina," International Food and Agribusiness Management Review, International Food and Agribusiness Management Association, vol. 16(1), pages 1-26, February.
    10. Faraco, Vincenza & Hadar, Yitzhak, 2011. "The potential of lignocellulosic ethanol production in the Mediterranean Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 252-266, January.
    11. Bai, Attila & Durkó, Emília & Tar, Károly & Tóth, József Barnabás & Lázár, István & Kapocska, László & Kircsi, Andrea & Bartók, Blanka & Vass, Róbert & Pénzes, János & Tóth, Tamás, 2016. "Social and economic possibilities for the energy utilization of fitomass in the valley of the river Hernád," Renewable Energy, Elsevier, vol. 85(C), pages 777-789.
    12. repec:bla:afrdev:v:29:y:2017:i:s2:p:78-95 is not listed on IDEAS
    13. Balogh, P. & Bai, A. & Popp, J. & Huzsvai, L. & Jobbágy, P., 2015. "Internet-orientated Hungarian car drivers’ knowledge and attitudes towards biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 17-26.
    14. Jessica Zhang & Sarah Palmer & David Pimentel, 2012. "Energy production from corn," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(2), pages 221-231, April.
    15. Lior, Noam, 2010. "Sustainable energy development: The present (2009) situation and possible paths to the future," Energy, Elsevier, vol. 35(10), pages 3976-3994.
    16. Edeseyi, Margaret E. & Kaita, Aminu Y. & Harun, Razif & Danquah, Michael K. & Acquah, Caleb & Sia, Joseph Kee Ming, 2015. "Rethinking sustainable biofuel marketing to titivate commercial interests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 781-792.
    17. de Castro, Carlos & Carpintero, Óscar & Frechoso, Fernando & Mediavilla, Margarita & de Miguel, Luis J., 2014. "A top-down approach to assess physical and ecological limits of biofuels," Energy, Elsevier, vol. 64(C), pages 506-512.
    18. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    19. Demirbas, M. Fatih, 2011. "Biofuels from algae for sustainable development," Applied Energy, Elsevier, vol. 88(10), pages 3473-3480.
    20. Ajanovic, Amela, 2011. "Biofuels versus food production: Does biofuels production increase food prices?," Energy, Elsevier, vol. 36(4), pages 2070-2076.
    21. Bilgili, Levent, 2023. "A systematic review on the acceptance of alternative marine fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:24:p:9495-:d:1003608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.