IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i3p1730-1744d46289.html
   My bibliography  Save this article

Double Distribution Activation Energy Model as Suitable Tool in Explaining Biomass and Coal Pyrolysis Behavior

Author

Listed:
  • Paolo De Filippis

    (Department of Chemical Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Roma, Italy)

  • Benedetta De Caprariis

    (Department of Chemical Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Roma, Italy)

  • Marco Scarsella

    (Department of Chemical Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Roma, Italy)

  • Nicola Verdone

    (Department of Chemical Engineering, Sapienza University of Rome, via Eudossiana 18, 00184 Roma, Italy)

Abstract

Understanding and modeling of coal and biomass pyrolysis assume particular importance being the first step occurring in both gasification and combustion processes. The complex chemical reaction network occurring in this step leads to a necessary effort in developing a suitable model framework capable of grasping the physics of the phenomenon and allowing a deeper comprehension of the sequence of events. The aim of this work is to show how the intrinsic flexibility of a model based on a double distribution of the activation energy is able to properly describe the two separate steps of primary and secondary pyrolysis, which characterize the thermochemical processing of most of the energetic materials. The model performance was tested by fitting the kinetic parameters from experimental data obtained by thermogravimetric analysis of two materials, which represent very different classes of energy source: a microalgae biomass and a sub-bituminous coal. The model reproduces with high accuracy the pyrolysis behavior of both the materials and adds important information about the relative occurring of the two pyrolysis steps.

Suggested Citation

  • Paolo De Filippis & Benedetta De Caprariis & Marco Scarsella & Nicola Verdone, 2015. "Double Distribution Activation Energy Model as Suitable Tool in Explaining Biomass and Coal Pyrolysis Behavior," Energies, MDPI, vol. 8(3), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1730-1744:d:46289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/3/1730/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/3/1730/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gyeong-Min Kim & Dae-Gyun Lee & Chung-Hwan Jeon, 2019. "Fundamental Characteristics and Kinetic Analysis of Lignocellulosic Woody and Herbaceous Biomass Fuels," Energies, MDPI, vol. 12(6), pages 1-16, March.
    2. Hongbin Gao & Jingkuan Li, 2019. "Thermogravimetric analysis of the co-combustion of coal and polyvinyl chloride," PLOS ONE, Public Library of Science, vol. 14(10), pages 1-35, October.
    3. Xiangxi Wang & Zhenzhong Hu & Inamullah Mian & Omar D. Dacres & Jian Li & Bo Wei & Mei Zhong & Xian Li & Noor Rahman & Guangqian Luo & Hong Yao, 2022. "Gasification Kinetics of Organic Solid Waste Pellets: Comparative Study Using Distributed Activation Energy Model and Coats–Redfern Method," Energies, MDPI, vol. 15(24), pages 1-12, December.
    4. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bauer, Fredric & Hulteberg, Christian, 2014. "Isobutanol from glycerine – A techno-economic evaluation of a new biofuel production process," Applied Energy, Elsevier, vol. 122(C), pages 261-268.
    2. Caspeta, Luis & Caro-Bermúdez, Mario A. & Ponce-Noyola, Teresa & Martinez, Alfredo, 2014. "Enzymatic hydrolysis at high-solids loadings for the conversion of agave bagasse to fuel ethanol," Applied Energy, Elsevier, vol. 113(C), pages 277-286.
    3. Toka, Agorasti & Iakovou, Eleftherios & Vlachos, Dimitrios & Tsolakis, Naoum & Grigoriadou, Anastasia-Loukia, 2014. "Managing the diffusion of biomass in the residential energy sector: An illustrative real-world case study," Applied Energy, Elsevier, vol. 129(C), pages 56-69.
    4. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    5. Yukun Cao & Jingxuan Cai & Xiangyue Liu, 2024. "RETRACTED ARTICLE: Advancing toward a sustainable future: assessing the impact of energy transition, circular economy, and international trade on carbon footprint," Economic Change and Restructuring, Springer, vol. 57(2), pages 1-26, April.
    6. Schipfer, Fabian & Kranzl, Lukas, 2019. "Techno-economic evaluation of biomass-to-end-use chains based on densified bioenergy carriers (dBECs)," Applied Energy, Elsevier, vol. 239(C), pages 715-724.
    7. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    8. Sastre, C.M. & Maletta, E. & González-Arechavala, Y. & Ciria, P. & Santos, A.M. & del Val, A. & Pérez, P. & Carrasco, J., 2014. "Centralised electricity production from winter cereals biomass grown under central-northern Spain conditions: Global warming and energy yield assessments," Applied Energy, Elsevier, vol. 114(C), pages 737-748.
    9. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    10. Ebrahimian, Farinaz & Karimi, Keikhosro & Angelidaki, Irini, 2022. "Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion," Renewable Energy, Elsevier, vol. 194(C), pages 552-560.
    11. Budzianowski, Wojciech M. & Postawa, Karol, 2016. "Total Chain Integration of sustainable biorefinery systems," Applied Energy, Elsevier, vol. 184(C), pages 1432-1446.
    12. Weiming Zhan & Kejiang Li & Rita Khanna & Yuri Konyukhov & Zeng Liang & Yushan Bu & Zhen Sun & Chunhe Jiang & Jianliang Zhang, 2024. "The Catalytic Effect of Pt on Lignin Pyrolysis: A Reactive Molecular Dynamics Study," Sustainability, MDPI, vol. 16(8), pages 1-14, April.
    13. Ding, Mingyue & Yang, Yong & Li, Yongwang & Wang, Tiejun & Ma, Longlong & Wu, Chuangzhi, 2013. "Impact of H2/CO ratios on phase and performance of Mn-modified Fe-based Fischer Tropsch synthesis catalyst," Applied Energy, Elsevier, vol. 112(C), pages 1241-1246.
    14. Yaoyang, Xu & Boeing, Wiebke J., 2013. "Mapping biofuel field: A bibliometric evaluation of research output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 82-91.
    15. Montuori, Lina & Alcázar-Ortega, Manuel & Álvarez-Bel, Carlos & Domijan, Alex, 2014. "Integration of renewable energy in microgrids coordinated with demand response resources: Economic evaluation of a biomass gasification plant by Homer Simulator," Applied Energy, Elsevier, vol. 132(C), pages 15-22.
    16. Arshad, Muhammad & Ahmed, Sibtain, 2016. "Cogeneration through bagasse: A renewable strategy to meet the future energy needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 732-737.
    17. Moraes, Bruna S. & Junqueira, Tassia L. & Pavanello, Lucas G. & Cavalett, Otávio & Mantelatto, Paulo E. & Bonomi, Antonio & Zaiat, Marcelo, 2014. "Anaerobic digestion of vinasse from sugarcane biorefineries in Brazil from energy, environmental, and economic perspectives: Profit or expense?," Applied Energy, Elsevier, vol. 113(C), pages 825-835.
    18. Tian, Hailin & Li, Jie & Yan, Miao & Tong, Yen Wah & Wang, Chi-Hwa & Wang, Xiaonan, 2019. "Organic waste to biohydrogen: A critical review from technological development and environmental impact analysis perspective," Applied Energy, Elsevier, vol. 256(C).
    19. Bagnato, Giuseppe & Boulet, Florent & Sanna, Aimaro, 2019. "Effect of Li-LSX zeolite, NiCe/Al2O3 and NiCe/ZrO2 on the production of drop-in bio-fuels by pyrolysis and hydrotreating of Nannochloropsis and isochrysis microalgae," Energy, Elsevier, vol. 179(C), pages 199-213.
    20. Dincer, Ibrahim & Acar, Canan, 2017. "Smart energy systems for a sustainable future," Applied Energy, Elsevier, vol. 194(C), pages 225-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:3:p:1730-1744:d:46289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.