IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v192y2017icp543-550.html
   My bibliography  Save this article

Low pH, high salinity: Too much for microbial fuel cells?

Author

Listed:
  • Jannelli, Nicole
  • Anna Nastro, Rosa
  • Cigolotti, Viviana
  • Minutillo, Mariagiovanna
  • Falcucci, Giacomo

Abstract

Twelve single chambered, air-cathode Tubular Microbial Fuel Cells (TMFCs) have been filled up with fruit and vegetable residues. The anodes were realized by means of a carbon fiber brush, while the cathodes were realized through a graphite-based porous ceramic disk with Nafion membranes (117 Dupont). The performances in terms of polarization curves and power production were assessed according to different operating conditions: percentage of solid substrate water dilution, adoption of freshwater and a 35mg/L NaCl water solution and, finally, the effect of an initial potentiostatic growth.

Suggested Citation

  • Jannelli, Nicole & Anna Nastro, Rosa & Cigolotti, Viviana & Minutillo, Mariagiovanna & Falcucci, Giacomo, 2017. "Low pH, high salinity: Too much for microbial fuel cells?," Applied Energy, Elsevier, vol. 192(C), pages 543-550.
  • Handle: RePEc:eee:appene:v:192:y:2017:i:c:p:543-550
    DOI: 10.1016/j.apenergy.2016.07.079
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916310200
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.07.079?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Srirangan, Kajan & Akawi, Lamees & Moo-Young, Murray & Chou, C. Perry, 2012. "Towards sustainable production of clean energy carriers from biomass resources," Applied Energy, Elsevier, vol. 100(C), pages 172-186.
    2. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    3. Venkata Mohan, S. & Velvizhi, G. & Annie Modestra, J. & Srikanth, S., 2014. "Microbial fuel cell: Critical factors regulating bio-catalyzed electrochemical process and recent advancements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 779-797.
    4. Dong, Jun & Chi, Yong & Zou, Daoan & Fu, Chao & Huang, Qunxing & Ni, Mingjiang, 2014. "Energy–environment–economy assessment of waste management systems from a life cycle perspective: Model development and case study," Applied Energy, Elsevier, vol. 114(C), pages 400-408.
    5. Pandey, Prashant & Shinde, Vikas N. & Deopurkar, Rajendra L. & Kale, Sharad P. & Patil, Sunil A. & Pant, Deepak, 2016. "Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery," Applied Energy, Elsevier, vol. 168(C), pages 706-723.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hu, Xiaoyi & Tan, Xinru & Shi, Xiaomin & Liu, Wenjun & Ouyang, Tiancheng, 2023. "An integrated assessment of microfluidic microbial fuel cell subjected to vibration excitation," Applied Energy, Elsevier, vol. 336(C).
    2. de Ramón-Fernández, Alberto & Salar-García, M.J. & Ruiz-Fernández, Daniel & Greenman, J. & Ieropoulos, I., 2019. "Modelling the energy harvesting from ceramic-based microbial fuel cells by using a fuzzy logic approach," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    3. Giulia Massaglia & Adriano Sacco & Alain Favetto & Luciano Scaltrito & Sergio Ferrero & Roberto Mo & Candido F. Pirri & Marzia Quaglio, 2021. "Integration of Portable Sedimentary Microbial Fuel Cells in Autonomous Underwater Vehicles," Energies, MDPI, vol. 14(15), pages 1-12, July.
    4. Marks, Stanislaw & Makinia, Jacek & Fernandez-Morales, Francisco Jesus, 2019. "Performance of microbial fuel cells operated under anoxic conditions," Applied Energy, Elsevier, vol. 250(C), pages 1-6.
    5. Chatterjee, Pritha & Dessì, Paolo & Kokko, Marika & Lakaniemi, Aino-Maija & Lens, Piet, 2019. "Selective enrichment of biocatalysts for bioelectrochemical systems: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 10-23.
    6. Christwardana, Marcelinus & Frattini, Domenico & Accardo, Grazia & Yoon, Sung Pil & Kwon, Yongchai, 2018. "Early-stage performance evaluation of flowing microbial fuel cells using chemically treated carbon felt and yeast biocatalyst," Applied Energy, Elsevier, vol. 222(C), pages 369-382.
    7. Roustazadeh Sheikhyousefi, P. & Nasr Esfahany, M. & Colombo, A. & Franzetti, A. & Trasatti, S.P. & Cristiani, P., 2017. "Investigation of different configurations of microbial fuel cells for the treatment of oilfield produced water," Applied Energy, Elsevier, vol. 192(C), pages 457-465.
    8. Han, He-Xing & Shi, Chen & Yuan, Li & Sheng, Guo-Ping, 2017. "Enhancement of methyl orange degradation and power generation in a photoelectrocatalytic microbial fuel cell," Applied Energy, Elsevier, vol. 204(C), pages 382-389.
    9. Duarte, Kimberley D.Z. & Frattini, Domenico & Kwon, Yongchai, 2019. "High performance yeast-based microbial fuel cells by surfactant-mediated gold nanoparticles grown atop a carbon felt anode," Applied Energy, Elsevier, vol. 256(C).
    10. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    11. Mashkour, Mehrdad & Rahimnejad, Mostafa & Mashkour, Mahdi & Soavi, Francesca, 2021. "Increasing bioelectricity generation in microbial fuel cells by a high-performance cellulose-based membrane electrode assembly," Applied Energy, Elsevier, vol. 282(PA).
    12. Massaglia, Giulia & Margaria, Valentina & Sacco, Adriano & Tommasi, Tonia & Pentassuglia, Simona & Ahmed, Daniyal & Mo, Roberto & Pirri, Candido Fabrizio & Quaglio, Marzia, 2018. "In situ continuous current production from marine floating microbial fuel cells," Applied Energy, Elsevier, vol. 230(C), pages 78-85.
    13. Lewis, Alex J. & Borole, Abhijeet P., 2019. "Microbial electrolysis cells using complex substrates achieve high performance via continuous feeding-based control of reactor concentrations and community structure," Applied Energy, Elsevier, vol. 240(C), pages 608-616.
    14. Iain S. Michie & Richard M. Dinsdale & Alan J. Guwy & Giuliano C. Premier, 2020. "Electrogenic Biofilm Development Determines Charge Accumulation and Resistance to pH Perturbation," Energies, MDPI, vol. 13(14), pages 1-20, July.
    15. Vesselin Krassimirov Krastev & Giacomo Falcucci, 2018. "Simulating Engineering Flows through Complex Porous Media via the Lattice Boltzmann Method," Energies, MDPI, vol. 11(4), pages 1-14, March.
    16. Miguel Ángel López Zavala & Pamela Renée Torres Delenne & Omar Israel González Peña, 2018. "Improvement of Wastewater Treatment Performance and Power Generation in Microbial Fuel Cells by Enhancing Hydrolysis and Acidogenesis, and by Reducing Internal Losses," Energies, MDPI, vol. 11(9), pages 1-14, September.
    17. Wu, Shiqiang & Patil, Sunil A. & Chen, Shuiliang, 2018. "Auto-feeding microbial fuel cell inspired by transpiration of plants," Applied Energy, Elsevier, vol. 225(C), pages 934-939.
    18. Lu, Zhihao & Yin, Di & Chen, Peng & Wang, Hongzhen & Yang, Yuhang & Huang, Guangtuan & Cai, Lankun & Zhang, Lehua, 2020. "Power-generating trees: Direct bioelectricity production from plants with microbial fuel cells," Applied Energy, Elsevier, vol. 268(C).
    19. Xu, Lei & Wang, Bodi & Liu, Xiuhua & Yu, Wenzheng & Zhao, Yaqian, 2018. "Maximizing the energy harvest from a microbial fuel cell embedded in a constructed wetland," Applied Energy, Elsevier, vol. 214(C), pages 83-91.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christwardana, Marcelinus & Frattini, Domenico & Duarte, Kimberley D.Z. & Accardo, Grazia & Kwon, Yongchai, 2019. "Carbon felt molecular modification and biofilm augmentation via quorum sensing approach in yeast-based microbial fuel cells," Applied Energy, Elsevier, vol. 238(C), pages 239-248.
    2. Toczyłowska-Mamińska, Renata, 2017. "Limits and perspectives of pulp and paper industry wastewater treatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 764-772.
    3. Edmundas Kazimieras Zavadskas & Fausto Cavallaro & Valentinas Podvezko & Ieva Ubarte & Arturas Kaklauskas, 2017. "MCDM Assessment of a Healthy and Safe Built Environment According to Sustainable Development Principles: A Practical Neighborhood Approach in Vilnius," Sustainability, MDPI, vol. 9(5), pages 1-30, April.
    4. Bauer, Fredric & Hulteberg, Christian, 2014. "Isobutanol from glycerine – A techno-economic evaluation of a new biofuel production process," Applied Energy, Elsevier, vol. 122(C), pages 261-268.
    5. Woon, Kok Sin & Lo, Irene M.C., 2016. "An integrated life cycle costing and human health impact analysis of municipal solid waste management options in Hong Kong using modified eco-efficiency indicator," Resources, Conservation & Recycling, Elsevier, vol. 107(C), pages 104-114.
    6. Di Leo, Senatro & Salvia, Monica, 2017. "Local strategies and action plans towards resource efficiency in South East Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 286-305.
    7. Porzio, Giacomo Filippo & Colla, Valentina & Fornai, Barbara & Vannucci, Marco & Larsson, Mikael & Stripple, Håkan, 2016. "Process integration analysis and some economic-environmental implications for an innovative environmentally friendly recovery and pre-treatment of steel scrap," Applied Energy, Elsevier, vol. 161(C), pages 656-672.
    8. Justin P. Jahnke & Deborah A. Sarkes & Jessica L. Liba & James J. Sumner & Dimitra N. Stratis-Cullum, 2021. "Improved Microbial Fuel Cell Performance by Engineering E. coli for Enhanced Affinity to Gold," Energies, MDPI, vol. 14(17), pages 1-15, August.
    9. Giovanni Biancini & Barbara Marchetti & Luca Cioccolanti & Matteo Moglie, 2022. "Comprehensive Life Cycle Assessment Analysis of an Italian Composting Facility concerning Environmental Footprint Minimization and Renewable Energy Integration," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    10. Chang, Sheng-Tien & Liu, Shu-Hui & Li, Bing-Ye & Zheng, Zhi-Xian, 2023. "Improving the anodic packing and harmonizing the proton exchange membrane of bioelectrochemical systems for treating waste gases and generating electricity," Renewable Energy, Elsevier, vol. 204(C), pages 59-66.
    11. López-González, D. & Puig-Gamero, M. & Acién, F.G. & García-Cuadra, F. & Valverde, J.L. & Sanchez-Silva, L., 2015. "Energetic, economic and environmental assessment of the pyrolysis and combustion of microalgae and their oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1752-1770.
    12. Tang, Raymond Chong Ong & Jang, Jer-Huan & Lan, Tzu-Hsuan & Wu, Jung-Chen & Yan, Wei-Mon & Sangeetha, Thangavel & Wang, Chin-Tsan & Ong, Hwai Chyuan & Ong, Zhi Chao, 2020. "Review on design factors of microbial fuel cells using Buckingham's Pi Theorem," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    13. Rubio-Aliaga, Alvaro & García-Cascales, M. Socorro & Sánchez-Lozano, Juan Miguel & Molina-Garcia, Angel, 2021. "MCDM-based multidimensional approach for selection of optimal groundwater pumping systems: Design and case example," Renewable Energy, Elsevier, vol. 163(C), pages 213-224.
    14. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    15. Seckin, Candeniz & Bayulken, Ahmet R., 2013. "Extended Exergy Accounting (EEA) analysis of municipal wastewater treatment – Determination of environmental remediation cost for municipal wastewater," Applied Energy, Elsevier, vol. 110(C), pages 55-64.
    16. Anusha Ganta & Yasser Bashir & Sovik Das, 2022. "Dairy Wastewater as a Potential Feedstock for Valuable Production with Concurrent Wastewater Treatment through Microbial Electrochemical Technologies," Energies, MDPI, vol. 15(23), pages 1-34, November.
    17. Arodudu, Oludunsin Tunrayo & Helming, Katharina & Voinov, Alexey & Wiggering, Hubert, 2017. "Integrating agronomic factors into energy efficiency assessment of agro-bioenergy production – A case study of ethanol and biogas production from maize feedstock," Applied Energy, Elsevier, vol. 198(C), pages 426-439.
    18. Hani Alshahrani & Noman Islam & Darakhshan Syed & Adel Sulaiman & Mana Saleh Al Reshan & Khairan Rajab & Asadullah Shaikh & Jaweed Shuja-Uddin & Aadar Soomro, 2023. "Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues," Energies, MDPI, vol. 16(3), pages 1-24, February.
    19. Maradin Dario & Cerović Ljerka & Mjeda Trina, 2017. "Economic Effects of Renewable Energy Technologies," Naše gospodarstvo/Our economy, Sciendo, vol. 63(2), pages 49-59, June.
    20. Arshad, Muhammad & Ahmed, Sibtain, 2016. "Cogeneration through bagasse: A renewable strategy to meet the future energy needs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 732-737.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:192:y:2017:i:c:p:543-550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.