IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i10p11030-11046d56712.html
   My bibliography  Save this article

Sensorless Speed Control with Initial Rotor Position Estimation for Surface Mounted Permanent Magnet Synchronous Motor Drive in Electric Vehicles

Author

Listed:
  • Xuan Wu

    (Green Car Collaborative Innovation Center of Hunan Province, Hunan University, Changsha 410082, China)

  • Hui Wang

    (Green Car Collaborative Innovation Center of Hunan Province, Hunan University, Changsha 410082, China)

  • Shoudao Huang

    (Green Car Collaborative Innovation Center of Hunan Province, Hunan University, Changsha 410082, China)

  • Keyuan Huang

    (Green Car Collaborative Innovation Center of Hunan Province, Hunan University, Changsha 410082, China)

  • Li Wang

    (Green Car Collaborative Innovation Center of Hunan Province, Hunan University, Changsha 410082, China)

Abstract

The accurate information of the initial rotor position is very critical for successful starting of the Surface-mounted Permanent Magnet Synchronous Motor (SPMSM). In order to solve the problems of low accuracy and unreliability in the conventional estimation strategy, in this paper, an improved initial rotor position estimation strategy without any position sensor for SPMSM at standstill is proposed based on rectangular pulse voltage injection. In the work, when the second series of pulse voltages were applied. By the ways of strengthening the effect of weakening or strengthening magnetic fields and increasing the difference between each current of the vector. The improved strategy enhanced reliability and raised the initial position estimation accuracy from 7.5° to 1.875°. The improved strategy does not need any additional hardware. Experimental results demonstrate the validity and usefulness of the improved strategy.

Suggested Citation

  • Xuan Wu & Hui Wang & Shoudao Huang & Keyuan Huang & Li Wang, 2015. "Sensorless Speed Control with Initial Rotor Position Estimation for Surface Mounted Permanent Magnet Synchronous Motor Drive in Electric Vehicles," Energies, MDPI, vol. 8(10), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:11030-11046:d:56712
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/10/11030/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/10/11030/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Zheng & Chengde Tong & Jingang Bai & Jing Zhao & Yi Sui & Zhiyi Song, 2012. "Modeling and Control of a Flux-Modulated Compound-Structure Permanent-Magnet Synchronous Machine for Hybrid Electric Vehicles," Energies, MDPI, vol. 5(1), pages 1-13, January.
    2. Jing Zhao & Yashuang Yan & Bin Li & Xiangdong Liu & Zhen Chen, 2014. "Influence of Different Rotor Teeth Shapes on the Performance of Flux Switching Permanent Magnet Machines Used for Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-20, December.
    3. Jing Zhao & Zhongxin Gu & Bin Li & Xiangdong Liu & Xiaobei Li & Zhen Chen, 2015. "Research on the Torque and Back EMF Performance of a High Speed PMSM Used for Flywheel Energy Storage," Energies, MDPI, vol. 8(4), pages 1-22, April.
    4. Jingang Bai & Yong Liu & Yi Sui & Chengde Tong & Quanbin Zhao & Jiawei Zhang, 2014. "Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine," Energies, MDPI, vol. 7(3), pages 1-34, March.
    5. Ping Zheng & Chengde Tong & Jingang Bai & Yi Sui & Zhiyi Song & Fan Wu, 2012. "Magnetic Decoupling Design and Experimental Validation of a Radial-Radial Flux Compound-Structure Permanent-Magnet Synchronous Machine for HEVs," Energies, MDPI, vol. 5(10), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peixin Liang & Yulong Pei & Feng Chai & Kui Zhao, 2016. "Analytical Calculation of D - and Q -axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory," Energies, MDPI, vol. 9(8), pages 1-11, July.
    2. Ying Zhu & Ming Cheng & Haixiang Zang, 2017. "Sensorless Control for the EVT-Based New Dual Power Flow Wind Energy Conversion System," Energies, MDPI, vol. 10(7), pages 1-16, June.
    3. Hao Yan & Yongxiang Xu & Jibin Zou, 2016. "A Phase Current Reconstruction Approach for Three-Phase Permanent-Magnet Synchronous Motor Drive," Energies, MDPI, vol. 9(10), pages 1-16, October.
    4. Guan-Ren Chen & Shih-Chin Yang & Yu-Liang Hsu & Kang Li, 2017. "Position and Speed Estimation of Permanent Magnet Machine Sensorless Drive at High Speed Using an Improved Phase-Locked Loop," Energies, MDPI, vol. 10(10), pages 1-17, October.
    5. Jongwon Choi & Kwanghee Nam, 2018. "Wound Synchronous Machine Sensorless Control Based on Signal Injection into the Rotor Winding," Energies, MDPI, vol. 11(12), pages 1-20, November.
    6. Borzou Yousefi & Soodabeh Soleymani & Babak Mozafari & Seid Asghar Gholamian, 2017. "Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages," Energies, MDPI, vol. 10(10), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiangdong Liu & Zhongxin Gu & Jing Zhao, 2016. "Torque Ripple Reduction of a Novel Modular Arc-Linear Flux-Switching Permanent-Magnet Motor with Rotor Step Skewing," Energies, MDPI, vol. 9(6), pages 1-17, May.
    2. Jing Zhao & Zhongxin Gu & Bin Li & Xiangdong Liu & Xiaobei Li & Zhen Chen, 2015. "Research on the Torque and Back EMF Performance of a High Speed PMSM Used for Flywheel Energy Storage," Energies, MDPI, vol. 8(4), pages 1-22, April.
    3. Vannakone Lounthavong & Warat Sriwannarat & Apirat Siritaratiwat & Pirat Khunkitti, 2019. "Optimal Stator Design of Doubly Salient Permanent Magnet Generator for Enhancing the Electromagnetic Performance," Energies, MDPI, vol. 12(16), pages 1-12, August.
    4. Jing Zhao & Yun Zheng & Congcong Zhu & Xiangdong Liu & Bin Li, 2017. "A Novel Modular-Stator Outer-Rotor Flux-Switching Permanent-Magnet Motor," Energies, MDPI, vol. 10(7), pages 1-19, July.
    5. Fangwu Ma & Hongbin Yin & Lulu Wei & Liang Wu & Cansong Gu, 2018. "Analytical Calculation of Armature Reaction Field of the Interior Permanent Magnet Motor," Energies, MDPI, vol. 11(9), pages 1-12, September.
    6. Jing Zhao & Wei Liu & Bin Li & Xiangdong Liu & Congzhe Gao & Zhongxin Gu, 2015. "Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor," Energies, MDPI, vol. 8(9), pages 1-31, September.
    7. Gan Zhang & Wei Hua & Ming Cheng, 2015. "Steady-State Characteristics Analysis of Hybrid-Excited Flux-Switching Machines with Identical Iron Laminations," Energies, MDPI, vol. 8(11), pages 1-19, November.
    8. Chengming Zhang & Qingbo Guo & Liyi Li & Mingyi Wang & Tiecheng Wang, 2017. "System Efficiency Improvement for Electric Vehicles Adopting a Permanent Magnet Synchronous Motor Direct Drive System," Energies, MDPI, vol. 10(12), pages 1-27, December.
    9. Ying Fan & Weixia Zhu & Zhongbing Xue & Li Zhang & Zhixiang Zou, 2015. "A Multi-Function Conversion Technique for Vehicle-to-Grid Applications," Energies, MDPI, vol. 8(8), pages 1-16, July.
    10. Shun Li & Xinxiu Zhou, 2018. "Sensorless Energy Conservation Control for Permanent Magnet Synchronous Motors Based on a Novel Hybrid Observer Applied in Coal Conveyer Systems," Energies, MDPI, vol. 11(10), pages 1-23, September.
    11. Jingang Bai & Yong Liu & Yi Sui & Chengde Tong & Quanbin Zhao & Jiawei Zhang, 2014. "Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine," Energies, MDPI, vol. 7(3), pages 1-34, March.
    12. Bin Yu & Shukuan Zhang & Jidong Yan & Luming Cheng & Ping Zheng, 2015. "Thermal Analysis of a Novel Cylindrical Transverse-Flux Permanent-Magnet Linear Machine," Energies, MDPI, vol. 8(8), pages 1-23, July.
    13. Chengde Tong & Zhiyi Song & Jingang Bai & Jiaqi Liu & Ping Zheng, 2016. "Analytical Investigation of the Magnetic-Field Distribution in an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine," Energies, MDPI, vol. 9(8), pages 1-23, July.
    14. Feng Li & Xiaoyong Zhu, 2021. "Comparative Study of Stepwise Optimization and Global Optimization on a Nine-Phase Flux-Switching PM Generator," Energies, MDPI, vol. 14(16), pages 1-13, August.
    15. Warat Sriwannarat & Pattasad Seangwong & Vannakone Lounthavong & Sirote Khunkitti & Apirat Siritaratiwat & Pirat Khunkitti, 2020. "An Improvement of Output Power in Doubly Salient Permanent Magnet Generator Using Pole Configuration Adjustment," Energies, MDPI, vol. 13(17), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:10:p:11030-11046:d:56712. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.