IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i1p210-237d31990.html
   My bibliography  Save this article

Implementation and Control of a Residential Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and Demand Side Management

Author

Listed:
  • Julio Pascual

    (Department of Electrical and Electronic Engineering, Public University of Navarre (UPNa), Campus Arrosadia s/n, Edificio de los Pinos, Pamplona 31006, Spain)

  • Pablo Sanchis

    (Department of Electrical and Electronic Engineering, Public University of Navarre (UPNa), Campus Arrosadia s/n, Edificio de los Pinos, Pamplona 31006, Spain)

  • Luis Marroyo

    (Department of Electrical and Electronic Engineering, Public University of Navarre (UPNa), Campus Arrosadia s/n, Edificio de los Pinos, Pamplona 31006, Spain)

Abstract

This paper proposes an energy management strategy for a residential electrothermal microgrid, based on renewable energy sources. While grid connected, it makes use of a hybrid electrothermal storage system, formed by a battery and a hot water tank along with an electrical water heater as a controllable load, which make possible the energy management within the microgrid. The microgrid emulates the operation of a single family home with domestic hot water (DHW) consumption, a heating, ventilation and air conditioning (HVAC) system as well as the typical electric loads. An energy management strategy has been designed which optimizes the power exchanged with the grid profile in terms of peaks and fluctuations, in applications with high penetration levels of renewables. The proposed energy management strategy has been evaluated and validated experimentally in a full scale residential microgrid built in our Renewable Energy Laboratory, by means of continuous operation under real conditions. The results show that the combination of electric and thermal storage systems with controllable loads is a promising technology that could maximize the penetration level of renewable energies in the electric system.

Suggested Citation

  • Julio Pascual & Pablo Sanchis & Luis Marroyo, 2014. "Implementation and Control of a Residential Electrothermal Microgrid Based on Renewable Energies, a Hybrid Storage System and Demand Side Management," Energies, MDPI, vol. 7(1), pages 1-28, January.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:1:p:210-237:d:31990
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/1/210/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/1/210/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kriett, Phillip Oliver & Salani, Matteo, 2012. "Optimal control of a residential microgrid," Energy, Elsevier, vol. 42(1), pages 321-330.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liuming Jing & Dae-Hee Son & Sang-Hee Kang & Soon-Ryul Nam, 2016. "A Novel Protection Method for Single Line-to-Ground Faults in Ungrounded Low-Inertia Microgrids," Energies, MDPI, vol. 9(6), pages 1-16, June.
    2. Rafal Dzikowski, 2020. "DSO–TSO Coordination of Day-Ahead Operation Planning with the Use of Distributed Energy Resources," Energies, MDPI, vol. 13(14), pages 1-25, July.
    3. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    4. Federica Cucchiella & Idiano D’Adamo & Paolo Rosa, 2015. "Industrial Photovoltaic Systems: An Economic Analysis in Non-Subsidized Electricity Markets," Energies, MDPI, vol. 8(11), pages 1-16, November.
    5. Pascual, Julio & Barricarte, Javier & Sanchis, Pablo & Marroyo, Luis, 2015. "Energy management strategy for a renewable-based residential microgrid with generation and demand forecasting," Applied Energy, Elsevier, vol. 158(C), pages 12-25.
    6. Hosna Khajeh & Hannu Laaksonen & Amin Shokri Gazafroudi & Miadreza Shafie-khah, 2019. "Towards Flexibility Trading at TSO-DSO-Customer Levels: A Review," Energies, MDPI, vol. 13(1), pages 1-19, December.
    7. Tuballa, Maria Lorena & Abundo, Michael Lochinvar, 2016. "A review of the development of Smart Grid technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 710-725.
    8. Cabello, G.M. & Navas, S.J. & Vázquez, I.M. & Iranzo, A. & Pino, F.J., 2022. "Renewable medium-small projects in Spain: Past and present of microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    9. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    10. Giovanni Pau & Mario Collotta & Antonio Ruano & Jiahu Qin, 2017. "Smart Home Energy Management," Energies, MDPI, vol. 10(3), pages 1-5, March.
    11. Pascual, Julio & Arcos-Aviles, Diego & Ursúa, Alfredo & Sanchis, Pablo & Marroyo, Luis, 2021. "Energy management for an electro-thermal renewable–based residential microgrid with energy balance forecasting and demand side management," Applied Energy, Elsevier, vol. 295(C).
    12. Luis Fialho & Tomás Fartaria & Luis Narvarte & Manuel Collares Pereira, 2016. "Implementation and Validation of a Self-Consumption Maximization Energy Management Strategy in a Vanadium Redox Flow BIPV Demonstrator," Energies, MDPI, vol. 9(7), pages 1-13, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yingying & Jenkins, Bryan M. & Kornbluth, Kurt & Kendall, Alissa & Træholt, Chresten, 2018. "Optimization of a biomass-integrated renewable energy microgrid with demand side management under uncertainty," Applied Energy, Elsevier, vol. 230(C), pages 836-844.
    2. Asad, R. & Kazemi, A., 2014. "A novel distributed optimal power sharing method for radial dc microgrids with different distributed energy sources," Energy, Elsevier, vol. 72(C), pages 291-299.
    3. Bertolini, Marina & D'Alpaos, Chiara & Moretto, Michele, 2018. "Do Smart Grids boost investments in domestic PV plants? Evidence from the Italian electricity market," Energy, Elsevier, vol. 149(C), pages 890-902.
    4. Menon, Ramanunni P. & Paolone, Mario & Maréchal, François, 2013. "Study of optimal design of polygeneration systems in optimal control strategies," Energy, Elsevier, vol. 55(C), pages 134-141.
    5. Quddus, Md Abdul & Shahvari, Omid & Marufuzzaman, Mohammad & Ekşioğlu, Sandra D. & Castillo-Villar, Krystel K., 2021. "Designing a reliable electric vehicle charging station expansion under uncertainty," International Journal of Production Economics, Elsevier, vol. 236(C).
    6. Omaji Samuel & Nadeem Javaid & Mahmood Ashraf & Farruh Ishmanov & Muhammad Khalil Afzal & Zahoor Ali Khan, 2018. "Jaya based Optimization Method with High Dispatchable Distributed Generation for Residential Microgrid," Energies, MDPI, vol. 11(6), pages 1-29, June.
    7. Poolla, Chaitanya & Ishihara, Abraham K. & Milito, Rodolfo, 2019. "Designing near-optimal policies for energy management in a stochastic environment," Applied Energy, Elsevier, vol. 242(C), pages 1725-1737.
    8. Wang, Ge & Zhang, Qi & Li, Hailong & McLellan, Benjamin C. & Chen, Siyuan & Li, Yan & Tian, Yulu, 2017. "Study on the promotion impact of demand response on distributed PV penetration by using non-cooperative game theoretical analysis," Applied Energy, Elsevier, vol. 185(P2), pages 1869-1878.
    9. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    10. Ferruzzi, Gabriella & Cervone, Guido & Delle Monache, Luca & Graditi, Giorgio & Jacobone, Francesca, 2016. "Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production," Energy, Elsevier, vol. 106(C), pages 194-202.
    11. Bruni, G. & Cordiner, S. & Mulone, V. & Sinisi, V. & Spagnolo, F., 2016. "Energy management in a domestic microgrid by means of model predictive controllers," Energy, Elsevier, vol. 108(C), pages 119-131.
    12. Gomez-Herrera, Juan A. & Anjos, Miguel F., 2018. "Optimal collaborative demand-response planner for smart residential buildings," Energy, Elsevier, vol. 161(C), pages 370-380.
    13. Ghayour, Sepideh Saravani & Barforoushi, Taghi, 2022. "Optimal scheduling of electrical and thermal resources and appliances in a smart home under uncertainty," Energy, Elsevier, vol. 261(PA).
    14. Setlhaolo, Ditiro & Sichilalu, Sam & Zhang, Jiangfeng, 2017. "Residential load management in an energy hub with heat pump water heater," Applied Energy, Elsevier, vol. 208(C), pages 551-560.
    15. Velik, Rosemarie & Nicolay, Pascal, 2014. "Grid-price-dependent energy management in microgrids using a modified simulated annealing triple-optimizer," Applied Energy, Elsevier, vol. 130(C), pages 384-395.
    16. Castellini, Marta & Menoncin, Francesco & Moretto, Michele & Vergalli, Sergio, 2021. "Photovoltaic Smart Grids in the prosumers investment decisions: a real option model," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    17. Zhongwen Li & Chuanzhi Zang & Peng Zeng & Haibin Yu, 2016. "Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty," Energies, MDPI, vol. 9(7), pages 1-16, June.
    18. Shabir Ahmad & Israr Ullah & Faisal Jamil & DoHyeun Kim, 2020. "Toward the Optimal Operation of Hybrid Renewable Energy Resources in Microgrids," Energies, MDPI, vol. 13(20), pages 1-19, October.
    19. Parisio, Alessandra & Rikos, Evangelos & Tzamalis, George & Glielmo, Luigi, 2014. "Use of model predictive control for experimental microgrid optimization," Applied Energy, Elsevier, vol. 115(C), pages 37-46.
    20. Yang, Jiaojiao & Sun, Zeyi & Hu, Wenqing & Steinmeister, Louis, 2022. "Joint control of manufacturing and onsite microgrid system via novel neural-network integrated reinforcement learning algorithms," Applied Energy, Elsevier, vol. 315(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:1:p:210-237:d:31990. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.