IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v106y2016icp194-202.html
   My bibliography  Save this article

Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production

Author

Listed:
  • Ferruzzi, Gabriella
  • Cervone, Guido
  • Delle Monache, Luca
  • Graditi, Giorgio
  • Jacobone, Francesca

Abstract

The power grid consists of various electrical components and of multiple levels: transmission HV (High Voltage), distribution in MV (Medium Voltage) and distribution in LV (Low Voltage). In this framework, the MGs (Micro Grids) are classified as a distribution grid, usually in LV, able to provide services both in autonomous (island mode) and in grid connected mode.

Suggested Citation

  • Ferruzzi, Gabriella & Cervone, Guido & Delle Monache, Luca & Graditi, Giorgio & Jacobone, Francesca, 2016. "Optimal bidding in a Day-Ahead energy market for Micro Grid under uncertainty in renewable energy production," Energy, Elsevier, vol. 106(C), pages 194-202.
  • Handle: RePEc:eee:energy:v:106:y:2016:i:c:p:194-202
    DOI: 10.1016/j.energy.2016.02.166
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216302432
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.166?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holjevac, Ninoslav & Capuder, Tomislav & Kuzle, Igor, 2015. "Adaptive control for evaluation of flexibility benefits in microgrid systems," Energy, Elsevier, vol. 92(P3), pages 487-504.
    2. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    3. Cosentino, Valentina & Favuzza, Salvatore & Graditi, Giorgio & Ippolito, Mariano Giuseppe & Massaro, Fabio & Riva Sanseverino, Eleonora & Zizzo, Gaetano, 2012. "Smart renewable generation for an islanded system. Technical and economic issues of future scenarios," Energy, Elsevier, vol. 39(1), pages 196-204.
    4. Ottesen, Stig Ødegaard & Tomasgard, Asgeir & Fleten, Stein-Erik, 2016. "Prosumer bidding and scheduling in electricity markets," Energy, Elsevier, vol. 94(C), pages 828-843.
    5. Alessandrini, S. & Delle Monache, L. & Sperati, S. & Cervone, G., 2015. "An analog ensemble for short-term probabilistic solar power forecast," Applied Energy, Elsevier, vol. 157(C), pages 95-110.
    6. Laura Schechter, 2007. "Risk aversion and expected-utility theory: A calibration exercise," Journal of Risk and Uncertainty, Springer, vol. 35(1), pages 67-76, August.
    7. Ippolito, M.G. & Di Silvestre, M.L. & Riva Sanseverino, E. & Zizzo, G. & Graditi, G., 2014. "Multi-objective optimized management of electrical energy storage systems in an islanded network with renewable energy sources under different design scenarios," Energy, Elsevier, vol. 64(C), pages 648-662.
    8. Kriett, Phillip Oliver & Salani, Matteo, 2012. "Optimal control of a residential microgrid," Energy, Elsevier, vol. 42(1), pages 321-330.
    9. Antonio Bracale & Pierluigi Caramia & Guido Carpinelli & Anna Rita Di Fazio & Gabriella Ferruzzi, 2013. "A Bayesian Method for Short-Term Probabilistic Forecasting of Photovoltaic Generation in Smart Grid Operation and Control," Energies, MDPI, vol. 6(2), pages 1-15, February.
    10. Niknam, Taher & Golestaneh, Faranak & Malekpour, Ahmadreza, 2012. "Probabilistic energy and operation management of a microgrid containing wind/photovoltaic/fuel cell generation and energy storage devices based on point estimate method and self-adaptive gravitational," Energy, Elsevier, vol. 43(1), pages 427-437.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zizzo, G. & Beccali, M. & Bonomolo, M. & Di Pietra, B. & Ippolito, M.G. & La Cascia, D. & Leone, G. & Lo Brano, V. & Monteleone, F., 2017. "A feasibility study of some DSM enabling solutions in small islands: The case of Lampedusa," Energy, Elsevier, vol. 140(P1), pages 1030-1046.
    2. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    3. Galarza, Francisco, 2009. "Choices under Risk in Rural Peru," MPRA Paper 17708, University Library of Munich, Germany.
    4. Castellini, Marta & Menoncin, Francesco & Moretto, Michele & Vergalli, Sergio, 2021. "Photovoltaic Smart Grids in the prosumers investment decisions: a real option model," Journal of Economic Dynamics and Control, Elsevier, vol. 126(C).
    5. Zhongwen Li & Chuanzhi Zang & Peng Zeng & Haibin Yu, 2016. "Combined Two-Stage Stochastic Programming and Receding Horizon Control Strategy for Microgrid Energy Management Considering Uncertainty," Energies, MDPI, vol. 9(7), pages 1-16, June.
    6. Isabel Günther & Johannes K. Maier, 2014. "Poverty, Vulnerability, and Reference-Dependent Utility," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 60(1), pages 155-181, March.
    7. Bracco, Stefano & Delfino, Federico & Pampararo, Fabio & Robba, Michela & Rossi, Mansueto, 2014. "A mathematical model for the optimal operation of the University of Genoa Smart Polygeneration Microgrid: Evaluation of technical, economic and environmental performance indicators," Energy, Elsevier, vol. 64(C), pages 912-922.
    8. Khalid, Muhammad & Ahmadi, Abdollah & Savkin, Andrey V. & Agelidis, Vassilios G., 2016. "Minimizing the energy cost for microgrids integrated with renewable energy resources and conventional generation using controlled battery energy storage," Renewable Energy, Elsevier, vol. 97(C), pages 646-655.
    9. Castellini, Marta & Di Corato, Luca & Moretto, Michele & Vergalli, Sergio, 2021. "Energy exchange among heterogeneous prosumers under price uncertainty," Energy Economics, Elsevier, vol. 104(C).
    10. Kelachukwu J. Iheanetu, 2022. "Solar Photovoltaic Power Forecasting: A Review," Sustainability, MDPI, vol. 14(24), pages 1-31, December.
    11. Di Silvestre, M.L. & La Cascia, D. & Riva Sanseverino, E. & Zizzo, G., 2016. "Improving the energy efficiency of an islanded distribution network using classical and innovative computation methods," Utilities Policy, Elsevier, vol. 40(C), pages 58-66.
    12. Qiang Ni & Shengxian Zhuang & Hanmin Sheng & Song Wang & Jian Xiao, 2017. "An Optimized Prediction Intervals Approach for Short Term PV Power Forecasting," Energies, MDPI, vol. 10(10), pages 1-16, October.
    13. Janghorban Esfahani, Iman & Ifaei, Pouya & Kim, Jinsoo & Yoo, ChangKyoo, 2016. "Design of Hybrid Renewable Energy Systems with Battery/Hydrogen storage considering practical power losses: A MEPoPA (Modified Extended-Power Pinch Analysis)," Energy, Elsevier, vol. 100(C), pages 40-50.
    14. Fafchamps, Marcel & Kebede, Bereket & Zizzo, Daniel John, 2015. "Keep up with the winners: Experimental evidence on risk taking, asset integration, and peer effects," European Economic Review, Elsevier, vol. 79(C), pages 59-79.
    15. Lisa Cameron & Manisha Shah, 2015. "Risk-Taking Behavior in the Wake of Natural Disasters," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 484-515.
    16. Menachem Brenner & Yehuda Izhakian, 2011. "Asset Priving and Ambiguity: Empirical Evidence," Working Papers 11-10, New York University, Leonard N. Stern School of Business, Department of Economics.
    17. Frank Heinemann, 2008. "Measuring risk aversion and the wealth effect," Research in Experimental Economics, in: Risk Aversion in Experiments, pages 293-313, Emerald Group Publishing Limited.
    18. Booij, Adam S. & van Praag, Bernard M.S., 2009. "A simultaneous approach to the estimation of risk aversion and the subjective time discount rate," Journal of Economic Behavior & Organization, Elsevier, vol. 70(1-2), pages 374-388, May.
    19. Elsied, Moataz & Oukaour, Amrane & Gualous, Hamid & Hassan, Radwan, 2015. "Energy management and optimization in microgrid system based on green energy," Energy, Elsevier, vol. 84(C), pages 139-151.
    20. Luca Massidda & Marino Marrocu, 2018. "Quantile Regression Post-Processing of Weather Forecast for Short-Term Solar Power Probabilistic Forecasting," Energies, MDPI, vol. 11(7), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:106:y:2016:i:c:p:194-202. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.