IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i12p8076-8094d42969.html
   My bibliography  Save this article

A Novel Data-Driven Fast Capacity Estimation of Spent Electric Vehicle Lithium-ion Batteries

Author

Listed:
  • Caiping Zhang

    (National Active Distribution Network Center, Beijing Jiaotong University, Beijing 100044, China)

  • Jiuchun Jiang

    (National Active Distribution Network Center, Beijing Jiaotong University, Beijing 100044, China)

  • Weige Zhang

    (National Active Distribution Network Center, Beijing Jiaotong University, Beijing 100044, China)

  • Yukun Wang

    (National Active Distribution Network Center, Beijing Jiaotong University, Beijing 100044, China)

  • Suleiman M. Sharkh

    (School of Engineering and the Environment, University of Southampton, Highfield, Southampton SO17 1BJ, UK)

  • Rui Xiong

    (National Engineering Laboratory for Electric Vehicles, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

Abstract

Fast capacity estimation is a key enabling technique for second-life of lithium-ion batteries due to the hard work involved in determining the capacity of a large number of used electric vehicle (EV) batteries. This paper tries to make three contributions to the existing literature through a robust and advanced algorithm: (1) a three layer back propagation artificial neural network (BP ANN) model is developed to estimate the battery capacity. The model employs internal resistance expressing the battery’s kinetics as the model input, which can realize fast capacity estimation; (2) an estimation error model is established to investigate the relationship between the robustness coefficient and regression coefficient. It is revealed that commonly used ANN capacity estimation algorithm is flawed in providing robustness of parameter measurement uncertainties; (3) the law of large numbers is used as the basis for a proposed robust estimation approach, which optimally balances the relationship between estimation accuracy and disturbance rejection. An optimal range of the threshold for robustness coefficient is also discussed and proposed. Experimental results demonstrate the efficacy and the robustness of the BP ANN model together with the proposed identification approach, which can provide an important basis for large scale applications of second-life of batteries.

Suggested Citation

  • Caiping Zhang & Jiuchun Jiang & Weige Zhang & Yukun Wang & Suleiman M. Sharkh & Rui Xiong, 2014. "A Novel Data-Driven Fast Capacity Estimation of Spent Electric Vehicle Lithium-ion Batteries," Energies, MDPI, vol. 7(12), pages 1-19, December.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:8076-8094:d:42969
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/12/8076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/12/8076/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Zhang & Bo Guo, 2015. "Online Capacity Estimation of Lithium-Ion Batteries Based on Novel Feature Extraction and Adaptive Multi-Kernel Relevance Vector Machine," Energies, MDPI, vol. 8(11), pages 1-19, November.
    2. Jinsong Yu & Baohua Mo & Diyin Tang & Jie Yang & Jiuqing Wan & Jingjing Liu, 2017. "Indirect State-of-Health Estimation for Lithium-Ion Batteries under Randomized Use," Energies, MDPI, vol. 10(12), pages 1-19, December.
    3. Yong Tian & Qianyuan Dong & Jindong Tian & Xiaoyu Li, 2023. "Capacity Estimation of Lithium-Ion Batteries Based on Multiple Small Voltage Sections and BP Neural Networks," Energies, MDPI, vol. 16(2), pages 1-18, January.
    4. Weiping Diao & Jiuchun Jiang & Hui Liang & Caiping Zhang & Yan Jiang & Leyi Wang & Biqiang Mu, 2016. "Flexible Grouping for Enhanced Energy Utilization Efficiency in Battery Energy Storage Systems," Energies, MDPI, vol. 9(7), pages 1-15, June.
    5. Sebastian Bräuer & Florian Plenter & Benjamin Klör & Markus Monhof & Daniel Beverungen & Jörg Becker, 2020. "Transactions for trading used electric vehicle batteries: theoretical underpinning and information systems design principles," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 311-342, April.
    6. Liu, Yisheng & Fan, Guodong & Zhou, Boru & Chen, Shun & Sun, Ziqiang & Wang, Yansong & Zhang, Xi, 2023. "Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks," Applied Energy, Elsevier, vol. 351(C).
    7. Xuning Feng & Caihao Weng & Xiangming He & Li Wang & Dongsheng Ren & Languang Lu & Xuebing Han & Minggao Ouyang, 2018. "Incremental Capacity Analysis on Commercial Lithium-Ion Batteries using Support Vector Regression: A Parametric Study," Energies, MDPI, vol. 11(9), pages 1-21, September.
    8. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    9. Hong Zhang & Li Zhao & Yong Chen, 2015. "A Lossy Counting-Based State of Charge Estimation Method and Its Application to Electric Vehicles," Energies, MDPI, vol. 8(12), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    2. Yanting Du & Guangdi Hu & Shun Xiang & Ke Zhang & Hongxing Liu & Feng Guo, 2018. "Estimation of the Diesel Particulate Filter Soot Load Based on an Equivalent Circuit Model," Energies, MDPI, vol. 11(2), pages 1-13, February.
    3. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    4. Xiong, Rui & Sun, Fengchun & He, Hongwen & Nguyen, Trong Duy, 2013. "A data-driven adaptive state of charge and power capability joint estimator of lithium-ion polymer battery used in electric vehicles," Energy, Elsevier, vol. 63(C), pages 295-308.
    5. Xiong, Rui & Duan, Yanzhou & Cao, Jiayi & Yu, Quanqing, 2018. "Battery and ultracapacitor in-the-loop approach to validate a real-time power management method for an all-climate electric vehicle," Applied Energy, Elsevier, vol. 217(C), pages 153-165.
    6. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    7. Xuezhe Wei & Xueyuan Wang & Haifeng Dai, 2018. "Practical On-Board Measurement of Lithium Ion Battery Impedance Based on Distributed Voltage and Current Sampling," Energies, MDPI, vol. 11(1), pages 1-15, January.
    8. Xiaofeng Ding & Min Du & Jiawei Cheng & Feida Chen & Suping Ren & Hong Guo, 2017. "Impact of Silicon Carbide Devices on the Dynamic Performance of Permanent Magnet Synchronous Motor Drive Systems for Electric Vehicles," Energies, MDPI, vol. 10(3), pages 1-19, March.
    9. He, Hongwen & Xiong, Rui & Peng, Jiankun, 2016. "Real-time estimation of battery state-of-charge with unscented Kalman filter and RTOS μCOS-II platform," Applied Energy, Elsevier, vol. 162(C), pages 1410-1418.
    10. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    11. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    12. Huang, Deyang & Chen, Ziqiang & Zhou, Shiyao, 2021. "Model prediction-based battery-powered heating method for series-connected lithium-ion battery pack working at extremely cold temperatures," Energy, Elsevier, vol. 216(C).
    13. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    14. Jiang, Yunfeng & Xia, Bing & Zhao, Xin & Nguyen, Truong & Mi, Chris & de Callafon, Raymond A., 2017. "Data-based fractional differential models for non-linear dynamic modeling of a lithium-ion battery," Energy, Elsevier, vol. 135(C), pages 171-181.
    15. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    16. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    17. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    18. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    19. Taimoor Zahid & Weimin Li, 2016. "A Comparative Study Based on the Least Square Parameter Identification Method for State of Charge Estimation of a LiFePO 4 Battery Pack Using Three Model-Based Algorithms for Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-16, September.
    20. Hu, Chao & Jain, Gaurav & Tamirisa, Prabhakar & Gorka, Tom, 2014. "Method for estimating capacity and predicting remaining useful life of lithium-ion battery," Applied Energy, Elsevier, vol. 126(C), pages 182-189.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:12:p:8076-8094:d:42969. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.