IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v351y2023ics0306261923012898.html
   My bibliography  Save this article

Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks

Author

Listed:
  • Liu, Yisheng
  • Fan, Guodong
  • Zhou, Boru
  • Chen, Shun
  • Sun, Ziqiang
  • Wang, Yansong
  • Zhang, Xi

Abstract

Monitoring the capacity of lithium-ion battery is a crucial task to ensure its safety and reliability during long-term use. However, conventional capacity estimation methods heavily rely on the specially designed operating conditions or durations of charge/discharge cycles, limiting their applications in real-world operations. To address such challenges, in this paper, a fast and flexible method is proposed to accurately estimate battery capacity based on a residual convolutional neural network using only small pieces of raw measurement data. And Bayesian optimization as well as network slimming are introduced to optimize and prune the network structure. Then, the proposed model is validated in two public battery degradation data sets, containing two types of batteries and six types of charging strategies in total. It's shown that the model is flexible enough to cope with the application scenarios of different charging strategies, different sampling frequencies and different voltage ranges starting at arbitrary initial SOCs, while still achieving fast and accurate capacity estimation. The mean absolute errors on 38 LFP batteries and 8 LCO batteries with a four-fold cross validation approach are all below 0.5% throughout the whole life of the batteries. Comprehensive case studies are also carried out to investigate the influence of capacity increment size, compression ratio of input data and the depth of network on the trade-offs between the model accuracy and its practicability for wide applications.

Suggested Citation

  • Liu, Yisheng & Fan, Guodong & Zhou, Boru & Chen, Shun & Sun, Ziqiang & Wang, Yansong & Zhang, Xi, 2023. "Rapid and flexible battery capacity estimation using random short-time charging segments based on residual convolutional networks," Applied Energy, Elsevier, vol. 351(C).
  • Handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012898
    DOI: 10.1016/j.apenergy.2023.121925
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923012898
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.121925?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Yu & Lin, Cheng & Li, Hailong & Du, Jiuyu & Xiong, Rui, 2021. "Detecting undesired lithium plating on anodes for lithium-ion batteries – A review on the in-situ methods," Applied Energy, Elsevier, vol. 300(C).
    2. Caiping Zhang & Jiuchun Jiang & Weige Zhang & Yukun Wang & Suleiman M. Sharkh & Rui Xiong, 2014. "A Novel Data-Driven Fast Capacity Estimation of Spent Electric Vehicle Lithium-ion Batteries," Energies, MDPI, vol. 7(12), pages 1-19, December.
    3. Feng, Fei & Hu, Xiaosong & Hu, Lin & Hu, Fengling & Li, Yang & Zhang, Lei, 2019. "Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 102-113.
    4. Li, Xiaoyu & Yuan, Changgui & Li, Xiaohui & Wang, Zhenpo, 2020. "State of health estimation for Li-Ion battery using incremental capacity analysis and Gaussian process regression," Energy, Elsevier, vol. 190(C).
    5. Li, Yi & Zou, Changfu & Berecibar, Maitane & Nanini-Maury, Elise & Chan, Jonathan C.-W. & van den Bossche, Peter & Van Mierlo, Joeri & Omar, Noshin, 2018. "Random forest regression for online capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 232(C), pages 197-210.
    6. Yu, Quanqing & Xiong, Rui & Yang, Ruixin & Pecht, Michael G., 2019. "Online capacity estimation for lithium-ion batteries through joint estimation method," Applied Energy, Elsevier, vol. 255(C).
    7. Pastor-Fernández, Carlos & Yu, Tung Fai & Widanage, W. Dhammika & Marco, James, 2019. "Critical review of non-invasive diagnosis techniques for quantification of degradation modes in lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 138-159.
    8. Li, Xiaoyu & Wang, Zhenpo & Zhang, Lei, 2019. "Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 174(C), pages 33-44.
    9. Berecibar, M. & Gandiaga, I. & Villarreal, I. & Omar, N. & Van Mierlo, J. & Van den Bossche, P., 2016. "Critical review of state of health estimation methods of Li-ion batteries for real applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 572-587.
    10. Li, Yihuan & Li, Kang & Liu, Xuan & Wang, Yanxia & Zhang, Li, 2021. "Lithium-ion battery capacity estimation — A pruned convolutional neural network approach assisted with transfer learning," Applied Energy, Elsevier, vol. 285(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yihuan & Li, Kang & Liu, Xuan & Wang, Yanxia & Zhang, Li, 2021. "Lithium-ion battery capacity estimation — A pruned convolutional neural network approach assisted with transfer learning," Applied Energy, Elsevier, vol. 285(C).
    2. Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
    3. Khaleghi, Sahar & Hosen, Md Sazzad & Karimi, Danial & Behi, Hamidreza & Beheshti, S. Hamidreza & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "Developing an online data-driven approach for prognostics and health management of lithium-ion batteries," Applied Energy, Elsevier, vol. 308(C).
    4. Diego Castanho & Marcio Guerreiro & Ludmila Silva & Jony Eckert & Thiago Antonini Alves & Yara de Souza Tadano & Sergio Luiz Stevan & Hugo Valadares Siqueira & Fernanda Cristina Corrêa, 2022. "Method for SoC Estimation in Lithium-Ion Batteries Based on Multiple Linear Regression and Particle Swarm Optimization," Energies, MDPI, vol. 15(19), pages 1-21, September.
    5. Mehta, Rohit & Gupta, Amit, 2024. "Mathematical modelling of electrochemical, thermal and degradation processes in lithium-ion cells—A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    6. Huang, Huanyang & Meng, Jinhao & Wang, Yuhong & Feng, Fei & Cai, Lei & Peng, Jichang & Liu, Tianqi, 2022. "A comprehensively optimized lithium-ion battery state-of-health estimator based on Local Coulomb Counting Curve," Applied Energy, Elsevier, vol. 322(C).
    7. Yao, Jiachi & Han, Te, 2023. "Data-driven lithium-ion batteries capacity estimation based on deep transfer learning using partial segment of charging/discharging data," Energy, Elsevier, vol. 271(C).
    8. Jiang, Bo & Zhu, Yuli & Zhu, Jiangong & Wei, Xuezhe & Dai, Haifeng, 2023. "An adaptive capacity estimation approach for lithium-ion battery using 10-min relaxation voltage within high state of charge range," Energy, Elsevier, vol. 263(PC).
    9. Rauf, Huzaifa & Khalid, Muhammad & Arshad, Naveed, 2022. "Machine learning in state of health and remaining useful life estimation: Theoretical and technological development in battery degradation modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Fan, Guodong & Zhang, Xi, 2023. "Battery capacity estimation using 10-second relaxation voltage and a convolutional neural network," Applied Energy, Elsevier, vol. 330(PA).
    11. Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
    12. Li, Yi & Liu, Kailong & Foley, Aoife M. & Zülke, Alana & Berecibar, Maitane & Nanini-Maury, Elise & Van Mierlo, Joeri & Hoster, Harry E., 2019. "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Zhang, Yajun & Liu, Yajie & Wang, Jia & Zhang, Tao, 2022. "State-of-health estimation for lithium-ion batteries by combining model-based incremental capacity analysis with support vector regression," Energy, Elsevier, vol. 239(PB).
    14. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    16. Ko, Chi-Jyun & Chen, Kuo-Ching, 2024. "Using tens of seconds of relaxation voltage to estimate open circuit voltage and state of health of lithium ion batteries," Applied Energy, Elsevier, vol. 357(C).
    17. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    18. Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
    19. Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
    20. Wei, Meng & Balaya, Palani & Ye, Min & Song, Ziyou, 2022. "Remaining useful life prediction for 18650 sodium-ion batteries based on incremental capacity analysis," Energy, Elsevier, vol. 261(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:351:y:2023:i:c:s0306261923012898. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.