IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i10p6741-6764d41386.html
   My bibliography  Save this article

Assessment of Energy, Environmental and Economic Performance of a Solar Desiccant Cooling System with Different Collector Types

Author

Listed:
  • Giovanni Angrisani

    (Department of Engineering, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Carlo Roselli

    (Department of Engineering, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Maurizio Sasso

    (Department of Engineering, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy)

  • Francesco Tariello

    (Department of Engineering, Università degli Studi del Sannio, Piazza Roma 21, 82100 Benevento, Italy)

Abstract

Desiccant-based air handling units can achieve reductions in greenhouse gas emissions and energy savings with respect to conventional air conditioning systems. Benefits are maximized when they interact with renewable energy technologies, such as solar collectors. In this work, experimental tests and data derived from scientific and technical literature are used to implement a model of a solar desiccant cooling system, considering three different collector technologies (air, flat-plate and evacuated collectors). Simulations were then performed to compare the energy, environmental and economic performance of the system with those of a desiccant-based unit where regeneration thermal energy is supplied by a natural gas boiler, and with those of a conventional air-handling unit. The only solution that allows achieving the economic feasibility of the solar desiccant cooling unit consists of 16 m 2 of evacuated solar collectors. This is able to obtain, with respect to the reference system, a reduction of primary energy consumption and of the equivalent CO 2 emissions of 50.2% and 49.8%, respectively, but with a payback time of 20 years.

Suggested Citation

  • Giovanni Angrisani & Carlo Roselli & Maurizio Sasso & Francesco Tariello, 2014. "Assessment of Energy, Environmental and Economic Performance of a Solar Desiccant Cooling System with Different Collector Types," Energies, MDPI, vol. 7(10), pages 1-24, October.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:10:p:6741-6764:d:41386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/10/6741/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/10/6741/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khalid, A. & Mahmood, M. & Asif, M. & Muneer, T., 2009. "Solar assisted, pre-cooled hybrid desiccant cooling system for Pakistan," Renewable Energy, Elsevier, vol. 34(1), pages 151-157.
    2. Fong, K.F. & Lee, C.K. & Chow, T.T. & Lin, Z. & Chan, L.S., 2010. "Solar hybrid air-conditioning system for high temperature cooling in subtropical city," Renewable Energy, Elsevier, vol. 35(11), pages 2439-2451.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesco Calise & Massimo Dentice D'Accadia & Antonio Piacentino & Maria Vicidomini, 2015. "Thermoeconomic Optimization of a Renewable Polygeneration System Serving a Small Isolated Community," Energies, MDPI, vol. 8(2), pages 1-30, January.
    2. M. Mujahid Rafique & Shafiqur Rehman & Aref Lashin & Nassir Al Arifi, 2016. "Analysis of a Solar Cooling System for Climatic Conditions of Five Different Cities of Saudi Arabia," Energies, MDPI, vol. 9(2), pages 1-13, January.
    3. Giovanni Angrisani & Carlo Roselli & Maurizio Sasso & Francesco Tariello & Giuseppe Peter Vanoli, 2016. "Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios," Energies, MDPI, vol. 9(9), pages 1-24, September.
    4. Kai-Shing Yang & Jian-Sin Wang & Shih-Kuo Wu & Chih-Yung Tseng & Jin-Cherng Shyu, 2017. "Performance Evaluation of a Desiccant Dehumidifier with a Heat Recovery Unit," Energies, MDPI, vol. 10(12), pages 1-12, December.
    5. Yunlong Ma & Suvash C. Saha & Wendy Miller & Lisa Guan, 2017. "Parametric Analysis of Design Parameter Effects on the Performance of a Solar Desiccant Evaporative Cooling System in Brisbane, Australia," Energies, MDPI, vol. 10(7), pages 1-22, June.
    6. Lanbo Lai & Xiaolin Wang & Gholamreza Kefayati & Eric Hu, 2021. "Evaporative Cooling Integrated with Solid Desiccant Systems: A Review," Energies, MDPI, vol. 14(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lo Basso, Gianluigi & de Santoli, Livio & Paiolo, Romano & Losi, Claudio, 2021. "The potential role of trans-critical CO2 heat pumps within a solar cooling system for building services: The hybridised system energy analysis by a dynamic simulation model," Renewable Energy, Elsevier, vol. 164(C), pages 472-490.
    2. Ge, T.S. & Dai, Y.J. & Wang, R.Z. & Li, Y., 2015. "Performance of two-stage rotary desiccant cooling system with different regeneration temperatures," Energy, Elsevier, vol. 80(C), pages 556-566.
    3. Mortadi, M. & El Fadar, A. & Achkari Begdouri, O., 2024. "4E analysis of photovoltaic thermal collector-based tri-generation system with adsorption cooling: Annual simulation under Moroccan climate conditions," Renewable Energy, Elsevier, vol. 221(C).
    4. Angrisani, Giovanni & Capozzoli, Alfonso & Minichiello, Francesco & Roselli, Carlo & Sasso, Maurizio, 2011. "Desiccant wheel regenerated by thermal energy from a microcogenerator: Experimental assessment of the performances," Applied Energy, Elsevier, vol. 88(4), pages 1354-1365, April.
    5. Jani, D.B. & Mishra, Manish & Sahoo, P.K., 2017. "Application of artificial neural network for predicting performance of solid desiccant cooling systems – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 352-366.
    6. Speerforck, Arne & Schmitz, Gerhard, 2016. "Experimental investigation of a ground-coupled desiccant assisted air conditioning system," Applied Energy, Elsevier, vol. 181(C), pages 575-585.
    7. Ge, T.S. & Dai, Y.J. & Wang, R.Z., 2014. "Review on solar powered rotary desiccant wheel cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 476-497.
    8. Liu, Xiao-Hua & Zhang, Tao & Zheng, Yu-Wei & Tu, Rang, 2016. "Performance investigation and exergy analysis of two-stage desiccant wheel systems," Renewable Energy, Elsevier, vol. 86(C), pages 877-888.
    9. Prieto, Alejandro & Knaack, Ulrich & Klein, Tillmann & Auer, Thomas, 2017. "25 Years of cooling research in office buildings: Review for the integration of cooling strategies into the building façade (1990–2014)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 89-102.
    10. Askalany, Ahmed A. & Saha, Bidyut B. & Kariya, Keishi & Ismail, Ibrahim M. & Salem, Mahmoud & Ali, Ahmed H.H. & Morsy, Mahmoud G., 2012. "Hybrid adsorption cooling systems–An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5787-5801.
    11. Fong, K.F. & Lee, C.K. & Lin, Z., 2019. "Investigation on effect of indoor air distribution strategy on solar air-conditioning systems," Renewable Energy, Elsevier, vol. 131(C), pages 413-421.
    12. Rambhad, Kishor S. & Walke, Pramod V. & Tidke, D.J., 2016. "Solid desiccant dehumidification and regeneration methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 73-83.
    13. Abdullah Ahmed Bawazir & Daniel Friedrich, 2022. "Evaluation and Design of Large-Scale Solar Adsorption Cooling Systems Based on Energetic, Economic and Environmental Performance," Energies, MDPI, vol. 15(6), pages 1-24, March.
    14. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.
    15. Lanbo Lai & Xiaolin Wang & Gholamreza Kefayati & Eric Hu, 2021. "Evaporative Cooling Integrated with Solid Desiccant Systems: A Review," Energies, MDPI, vol. 14(18), pages 1-23, September.
    16. Allouhi, A. & Kousksou, T. & Jamil, A. & Bruel, P. & Mourad, Y. & Zeraouli, Y., 2015. "Solar driven cooling systems: An updated review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 159-181.
    17. Xu, Jing & Huang, Meng & Liu, Zhiliang & Pan, Quanwen & Wang, Ruzhu & Ge, Tianshu, 2024. "Performance evaluation of a high-efficient hybrid adsorption refrigeration system for ultralow-grade heat utilization," Energy, Elsevier, vol. 288(C).
    18. Speerforck, Arne & Ling, Jiazhen & Aute, Vikrant & Radermacher, Reinhard & Schmitz, Gerhard, 2017. "Modeling and simulation of a desiccant assisted solar and geothermal air conditioning system," Energy, Elsevier, vol. 141(C), pages 2321-2336.
    19. Nižetić, S. & Duić, N. & Papadopulos, A.M. & Tina, G.M. & Grubišić-Čabo, F., 2015. "Energy efficiency evaluation of a hybrid energy system for building applications in a Mediterranean climate and its feasibility aspect," Energy, Elsevier, vol. 90(P1), pages 1171-1179.
    20. Amit Kumar & Avadhesh Yadav, 2017. "Experimental investigation of solar-powered desiccant cooling system by using composite desiccant “CaCl2/jute”," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(4), pages 1279-1292, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:10:p:6741-6764:d:41386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.