IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v137y2019icp82-92.html
   My bibliography  Save this article

Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings

Author

Listed:
  • Mateus, Ricardo
  • Silva, Sandra Monteiro
  • de Almeida, Manuela Guedes

Abstract

Nowadays, in the European Union (EU) the construction rate of new buildings is very low and therefore achieving the EU targets regarding the energy efficiency of the building sector is only possible through the reduction of the energy needs of the existing building stock. A building design based on passive measures is a priority to reduce operational energy consumption but it is not enough to achieve the nearly Zero Energy Building (nZEB) level. Consequently, the design must also consider active systems with high efficiency and the use of renewable energy sources to partially/totally replace the use of non-renewable energy. At this level, solar thermal and photovoltaic panels play an important role, mainly in countries with high levels of solar radiation, as in the Southern European countries. Nevertheless, there are still some barriers to overcome for the broader dissemination of the implementation of these systems. One of the most important is that building owners are not fully aware of the life cycle benefits that these systems have at environmental and economic levels. The best way to raise awareness to these benefits is through the analysis of case studies, highlighting the short or mid-term benefits resulting from the integration of these active solutions. Thus, this paper is aimed at analysing the environmental and life cycle costs of different energy renovation scenarios, assessing the contribution of the solar systems to achieve three levels of energy performance. The study is focused on the energy renovation of a detached single-family house considering the climatic conditions of Porto, Portugal. From the results, it is possible to conclude that, on an annual basis, and for the Portuguese climate, it is possible to overcome, many of the energy needs for acclimatization and preparation of domestic hot water with the integration of these systems. The study also shows attractive economic and carbon payback times resulting from their use.

Suggested Citation

  • Mateus, Ricardo & Silva, Sandra Monteiro & de Almeida, Manuela Guedes, 2019. "Environmental and cost life cycle analysis of the impact of using solar systems in energy renovation of Southern European single-family buildings," Renewable Energy, Elsevier, vol. 137(C), pages 82-92.
  • Handle: RePEc:eee:renene:v:137:y:2019:i:c:p:82-92
    DOI: 10.1016/j.renene.2018.04.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148118304440
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2018.04.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, L. & Yang, H.X., 2010. "Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong," Applied Energy, Elsevier, vol. 87(12), pages 3625-3631, December.
    2. José Vinagre Díaz, Juan & Richard Wilby, Mark & Belén Rodríguez González, Ana, 2013. "Setting up GHG-based energy efficiency targets in buildings: The Ecolabel," Energy Policy, Elsevier, vol. 59(C), pages 633-642.
    3. Lamnatou, Chr. & Chemisana, D. & Mateus, R. & Almeida, M.G. & Silva, S.M., 2015. "Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems," Renewable Energy, Elsevier, vol. 75(C), pages 833-846.
    4. Zahedi, A., 2011. "Maximizing solar PV energy penetration using energy storage technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 866-870, January.
    5. Zhong, Z.W. & Song, B. & Loh, P.E., 2011. "LCAs of a polycrystalline photovoltaic module and a wind turbine," Renewable Energy, Elsevier, vol. 36(8), pages 2227-2237.
    6. Ardente, Fulvio & Beccali, Giorgio & Cellura, Maurizio & Lo Brano, Valerio, 2005. "Life cycle assessment of a solar thermal collector: sensitivity analysis, energy and environmental balances," Renewable Energy, Elsevier, vol. 30(2), pages 109-130.
    7. Marszal, Anna Joanna & Heiselberg, Per & Lund Jensen, Rasmus & Nørgaard, Jesper, 2012. "On-site or off-site renewable energy supply options? Life cycle cost analysis of a Net Zero Energy Building in Denmark," Renewable Energy, Elsevier, vol. 44(C), pages 154-165.
    8. Tsilingiridis, G. & Martinopoulos, G. & Kyriakis, N., 2004. "Life cycle environmental impact of a thermosyphonic domestic solar hot water system in comparison with electrical and gas water heating," Renewable Energy, Elsevier, vol. 29(8), pages 1277-1288.
    9. Armendariz-Lopez, J.F. & Luna-Leon, A. & Gonzalez-Trevizo, M.E. & Arena-Granados, A.P. & Bojorquez-Morales, G., 2016. "Life cycle cost of photovoltaic technologies in commercial buildings in Baja California, Mexico," Renewable Energy, Elsevier, vol. 87(P1), pages 564-571.
    10. Esteban, Bernat & Riba, Jordi-Roger & Baquero, Grau & Puig, Rita & Rius, Antoni, 2014. "Environmental assessment of small-scale production of wood chips as a fuel for residential heating boilers," Renewable Energy, Elsevier, vol. 62(C), pages 106-115.
    11. Araya, R. & Bustos, F. & Contreras, J. & Fuentes, A., 2017. "Life-cycle savings for a flat-plate solar water collector plant in Chile," Renewable Energy, Elsevier, vol. 112(C), pages 365-377.
    12. Junghans, Lars, 2015. "Evaluation of the economic and environmental feasibility of heat pump systems in residential buildings, with varying qualities of the building envelope," Renewable Energy, Elsevier, vol. 76(C), pages 699-705.
    13. Belussi, Lorenzo & Mariotto, Matteo & Meroni, Italo & Zevi, Chiara & Svaldi, Sandra Dei, 2015. "LCA study and testing of a photovoltaic ceramic tile prototype," Renewable Energy, Elsevier, vol. 74(C), pages 263-270.
    14. Singh, G.K., 2013. "Solar power generation by PV (photovoltaic) technology: A review," Energy, Elsevier, vol. 53(C), pages 1-13.
    15. Ardente, Fulvio & Beccali, Giorgio & Cellura, Maurizio & Lo Brano, Valerio, 2005. "Life cycle assessment of a solar thermal collector," Renewable Energy, Elsevier, vol. 30(7), pages 1031-1054.
    16. Tyagi, V.V. & Rahim, Nurul A.A. & Rahim, N.A. & Selvaraj, Jeyraj A./L., 2013. "Progress in solar PV technology: Research and achievement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 443-461.
    17. Abd Rashid, Ahmad Faiz & Yusoff, Sumiani, 2015. "A review of life cycle assessment method for building industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 244-248.
    18. Arnaoutakis, Nektarios & Souliotis, Manolis & Papaefthimiou, Spiros, 2017. "Comparative experimental Life Cycle Assessment of two commercial solar thermal devices for domestic applications," Renewable Energy, Elsevier, vol. 111(C), pages 187-200.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Genice K. Grande-Acosta & Jorge M. Islas-Samperio, 2020. "Boosting Energy Efficiency and Solar Energy inside the Residential, Commercial, and Public Services Sectors in Mexico," Energies, MDPI, vol. 13(21), pages 1-24, October.
    2. Almeida, Manuela & Ascione, Fabrizio & Iovane, Teresa & Mastellone, Margherita & Mateus, Ricardo, 2024. "Impact of life cycle assessment analysis on energy efficiency projects in Mediterranean residential buildings," Energy, Elsevier, vol. 295(C).
    3. Yuanlong Cui & Shuangqing Tian & Jie Zhu & Stamatis Zoras & Yiming Shao, 2023. "Energy and Stochastic Economic Assessments of Photovoltaic Systems in the East Midlands," Energies, MDPI, vol. 16(18), pages 1-35, September.
    4. Wenjing Cui & Jingke Hong & Guiwen Liu & Kaijian Li & Yuanyuan Huang & Lin Zhang, 2021. "Co-Benefits Analysis of Buildings Based on Different Renewal Strategies: The Emergy-Lca Approach," IJERPH, MDPI, vol. 18(2), pages 1-22, January.
    5. Shaterabadi, Mohammad & Jirdehi, Mehdi Ahmadi & Amiri, Nima & Omidi, Sina, 2020. "Enhancement the economical and environmental aspects of plus-zero energy buildings integrated with INVELOX turbines," Renewable Energy, Elsevier, vol. 153(C), pages 1355-1367.
    6. Yan Li & Guoshun Wang & Zhaohao Li & Jiahai Yuan & Dan Gao & Heng Zhang, 2020. "A Life Cycle Analysis of Deploying Coking Technology to Utilize Low-Rank Coal in China," Sustainability, MDPI, vol. 12(12), pages 1-17, June.
    7. Mateo Mogrovejo-Narvaez & Antonio Barragán-Escandón & Esteban Zalamea-León & Xavier Serrano-Guerrero, 2024. "Barriers to the Implementation of On-Grid Photovoltaic Systems in Ecuador," Sustainability, MDPI, vol. 16(21), pages 1-18, October.
    8. De Luca, Giovanna & Ballarini, Ilaria & Lorenzati, Alice & Corrado, Vincenzo, 2020. "Renovation of a social house into a NZEB: Use of renewable energy sources and economic implications," Renewable Energy, Elsevier, vol. 159(C), pages 356-370.
    9. Cui, Yuanlong & Zhu, Jie & Meng, Fanran & Zoras, Stamatis & McKechnie, Jon & Chu, Junze, 2020. "Energy assessment and economic sensitivity analysis of a grid-connected photovoltaic system," Renewable Energy, Elsevier, vol. 150(C), pages 101-115.
    10. Pengying Wang & Shuo Zhang, 2022. "Retrofitting Strategies Based on Orthogonal Array Testing to Develop Nearly Zero Energy Buildings," Sustainability, MDPI, vol. 14(8), pages 1-18, April.
    11. López-Ochoa, Luis M. & Las-Heras-Casas, Jesús & González-Caballín, Juan M. & Carpio, Manuel, 2023. "Towards nearly zero-energy residential buildings in Mediterranean countries: The implementation of the Energy Performance of Buildings Directive 2018 in Spain," Energy, Elsevier, vol. 276(C).
    12. Ahsan Waqar & Idris Othman & Nasir Shafiq & Hasim Altan & Bertug Ozarisoy, 2023. "Modeling the Effect of Overcoming the Barriers to Passive Design Implementation on Project Sustainability Building Success: A Structural Equation Modeling Perspective," Sustainability, MDPI, vol. 15(11), pages 1-26, June.
    13. Duc Long Luong & Quang Trung Nguyen & Anh Duc Pham & Quynh Chau Truong & Minh Quan Duong, 2020. "Building a Decision-Making Support Framework for Installing Solar Panels on Vertical Glazing Façades of the Building Based on the Life Cycle Assessment and Environmental Benefit Analysis," Energies, MDPI, vol. 13(9), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bany Mousa, Osama & Kara, Sami & Taylor, Robert A., 2019. "Comparative energy and greenhouse gas assessment of industrial rooftop-integrated PV and solar thermal collectors," Applied Energy, Elsevier, vol. 241(C), pages 113-123.
    2. Comodi, Gabriele & Bevilacqua, Maurizio & Caresana, Flavio & Paciarotti, Claudia & Pelagalli, Leonardo & Venella, Paola, 2016. "Life cycle assessment and energy-CO2-economic payback analyses of renewable domestic hot water systems with unglazed and glazed solar thermal panels," Applied Energy, Elsevier, vol. 164(C), pages 944-955.
    3. Lamnatou, Chr. & Chemisana, D. & Mateus, R. & Almeida, M.G. & Silva, S.M., 2015. "Review and perspectives on Life Cycle Analysis of solar technologies with emphasis on building-integrated solar thermal systems," Renewable Energy, Elsevier, vol. 75(C), pages 833-846.
    4. Magrassi, Fabio & Rocco, Elena & Barberis, Stefano & Gallo, Michela & Del Borghi, Adriana, 2019. "Hybrid solar power system versus photovoltaic plant: A comparative analysis through a life cycle approach," Renewable Energy, Elsevier, vol. 130(C), pages 290-304.
    5. Carnevale, E. & Lombardi, L. & Zanchi, L., 2014. "Life Cycle Assessment of solar energy systems: Comparison of photovoltaic and water thermal heater at domestic scale," Energy, Elsevier, vol. 77(C), pages 434-446.
    6. Yvan Dutil & Daniel Rousse & Guillermo Quesada, 2011. "Sustainable Buildings: An Ever Evolving Target," Sustainability, MDPI, vol. 3(2), pages 1-22, February.
    7. Souliotis, Manolis & Arnaoutakis, Nektarios & Panaras, Giorgos & Kavga, Angeliki & Papaefthimiou, Spiros, 2018. "Experimental study and Life Cycle Assessment (LCA) of Hybrid Photovoltaic/Thermal (PV/T) solar systems for domestic applications," Renewable Energy, Elsevier, vol. 126(C), pages 708-723.
    8. Leckner, Mitchell & Zmeureanu, Radu, 2011. "Life cycle cost and energy analysis of a Net Zero Energy House with solar combisystem," Applied Energy, Elsevier, vol. 88(1), pages 232-241, January.
    9. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Lu, Yashun & Ji, Jie, 2018. "Life-cycle assessment of a low-concentration PV module for building south wall integration in China," Applied Energy, Elsevier, vol. 215(C), pages 174-185.
    10. Yu, Zhiqiang & Ma, Wenhui & Xie, Keqiang & Lv, Guoqiang & Chen, Zhengjie & Wu, Jijun & Yu, Jie, 2017. "Life cycle assessment of grid-connected power generation from metallurgical route multi-crystalline silicon photovoltaic system in China," Applied Energy, Elsevier, vol. 185(P1), pages 68-81.
    11. Greening, Benjamin & Azapagic, Adisa, 2014. "Domestic solar thermal water heating: A sustainable option for the UK?," Renewable Energy, Elsevier, vol. 63(C), pages 23-36.
    12. Gagliano, Antonio & Aneli, Stefano & Nocera, Francesco, 2019. "Analysis of the performance of a building solar thermal facade (BSTF) for domestic hot water production," Renewable Energy, Elsevier, vol. 142(C), pages 511-526.
    13. Li, Meng & Ma, Tao & Liu, Jiaying & Li, Huanhuan & Xu, Yaling & Gu, Wenbo & Shen, Lu, 2019. "Numerical and experimental investigation of precast concrete facade integrated with solar photovoltaic panels," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Jaroslav Košičan & Miguel Ángel Pardo Picazo & Silvia Vilčeková & Danica Košičanová, 2021. "Life Cycle Assessment and Economic Energy Efficiency of a Solar Thermal Installation in a Family House," Sustainability, MDPI, vol. 13(4), pages 1-19, February.
    15. Lamnatou, Chr. & Cristofari, C. & Chemisana, D. & Canaletti, J.L., 2016. "Building-integrated solar thermal systems based on vacuum-tube technology: Critical factors focusing on life-cycle environmental profile," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 1199-1215.
    16. Lund, P.D., 2007. "Upfront resource requirements for large-scale exploitation schemes of new renewable technologies," Renewable Energy, Elsevier, vol. 32(3), pages 442-458.
    17. Nguyen, Hiep V. & Law, Ying Lam E. & Alavy, Masih & Walsh, Philip R. & Leong, Wey H. & Dworkin, Seth B., 2014. "An analysis of the factors affecting hybrid ground-source heat pump installation potential in North America," Applied Energy, Elsevier, vol. 125(C), pages 28-38.
    18. Kane, Aarti & Verma, Vishal & Singh, Bhim, 2017. "Optimization of thermoelectric cooling technology for an active cooling of photovoltaic panel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1295-1305.
    19. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    20. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:137:y:2019:i:c:p:82-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.