IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i5p2586-2597.html
   My bibliography  Save this article

Co-benefits of CO2 emission reduction in a developing country

Author

Listed:
  • Shrestha, Ram M.
  • Pradhan, Shreekar

Abstract

In this paper, we examine the co-benefits of reducing CO2 emissions in Thailand during 2005-2050 in terms of local pollutant emissions as well as the role of renewable-, biomass- and nuclear-energy. It also examines the implications of CO2 emission reduction policy on energy security of the country. The analyses are based on a long term energy system model of Thailand using the MARKAL framework. The study shows that the power sector would account for the largest share (over 60%) in total CO2 emission reduction followed by the industrial and transport sectors. Under the CO2 emission reduction target of 30%, there would be a reduction in SO2 emission by 43% from the base case level. With the CO2 emission reduction target of 10-30%, the cumulative net energy imports in the country during 2005-2050 would be reduced in the range of over 16 thousand PJ to 26 thousand PJ from the base case emission level. Under the CO2 emission reduction targets, the primary energy supply system would be diversified towards lower use of coal and higher use of natural gas, biomass and nuclear fuels.

Suggested Citation

  • Shrestha, Ram M. & Pradhan, Shreekar, 2010. "Co-benefits of CO2 emission reduction in a developing country," Energy Policy, Elsevier, vol. 38(5), pages 2586-2597, May.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:5:p:2586-2597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00009-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Grubb, Michael & Butler, Lucy & Twomey, Paul, 2006. "Diversity and security in UK electricity generation: The influence of low-carbon objectives," Energy Policy, Elsevier, vol. 34(18), pages 4050-4062, December.
    2. Smekens-Ramirez Morales, Koen E. L., 2004. "Response from a MARKAL technology model to the EMF scenario assumptions," Energy Economics, Elsevier, vol. 26(4), pages 655-674, July.
    3. Tanatvanit, Somporn & Limmeechokchai, Bundit & Shrestha, Ram M., 2004. "CO2 mitigation and power generation implications of clean supply-side and demand-side technologies in Thailand," Energy Policy, Elsevier, vol. 32(1), pages 83-90, January.
    4. Ram M. Shrestha & Shreekar Pradhan & Migara H. Liyanage, 2008. "Effects of carbon tax on greenhouse gas mitigation in Thailand," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 140-155, December.
    5. Tanatvanit, Somporn & Limmeechokchai, Bundit & Chungpaibulpatana, Supachart, 2003. "Sustainable energy development strategies: implications of energy demand management and renewable energy in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 7(5), pages 367-395, October.
    6. Prasertsan, S. & Sajjakulnukit, B., 2006. "Biomass and biogas energy in Thailand: Potential, opportunity and barriers," Renewable Energy, Elsevier, vol. 31(5), pages 599-610.
    7. Santisirisomboon, Jerasorn & Limmeechokchai, Bundit & Chungpaibulpatana, Supachart, 2001. "Impacts of biomass power generation and CO2 taxation on electricity generation expansion planning and environmental emissions," Energy Policy, Elsevier, vol. 29(12), pages 975-985, October.
    8. Govinda Timilsina & Ram Shrestha, 2002. "General equilibrium analysis of economic and environmental effects of carbon tax in a developing country: case of Thailand," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 5(3), pages 179-211, September.
    9. Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Assessment of cleaner electricity generation technologies for net CO2 mitigation in Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 315-330, February.
    10. Uwe Remme & Markus Blesl, 2008. "A global perspective to achieve a low-carbon society (LCS): scenario analysis with the ETSAP-TIAM model," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 60-75, December.
    11. Shrestha, Ram M. & Malla, Sunil & Liyanage, Migara H., 2007. "Scenario-based analyses of energy system development and its environmental implications in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3179-3193, June.
    12. P. R. Shukla & Subash Dhar & Diptiranjan Mahapatra, 2008. "Low-carbon society scenarios for India," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 156-176, December.
    13. Jae Edmonds & Leon Clarke & Marshall Wise & Hugh Pitcher & Steve Smith, 2008. "Implications for the USA of stabilization of radiative forcing at 3.4 W/m-super-2," Climate Policy, Taylor & Francis Journals, vol. 8(sup1), pages 76-92, December.
    14. Limmeechokchai, Bundit & Suksuntornsiri, Pawinee, 2007. "Embedded energy and total greenhouse gas emissions in final consumptions within Thailand," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(2), pages 259-281, February.
    15. Nair Rajesh & P.R. Shukla & Manmohan Kapshe & Amit Garg & Ashish Rana, 2003. "Analysis of Long-term Energy and Carbon Emission Scenarios for India," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 8(1), pages 53-69, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hossain Mondal, Md. Alam & Sadrul Islam, A.K.M., 2012. "Impacts of CO2 emission constraints on penetration of solar PV in the Bangladesh power sector," Renewable Energy, Elsevier, vol. 43(C), pages 418-422.
    2. Yu Sang Chang & Byong-Jin You & Hann Earl Kim, 2020. "Dynamic Trends of Fine Particulate Matter Exposure across 190 Countries: Analysis and Key Insights," Sustainability, MDPI, vol. 12(7), pages 1-34, April.
    3. Dong, Huijuan & Dai, Hancheng & Dong, Liang & Fujita, Tsuyoshi & Geng, Yong & Klimont, Zbigniew & Inoue, Tsuyoshi & Bunya, Shintaro & Fujii, Minoru & Masui, Toshihiko, 2015. "Pursuing air pollutant co-benefits of CO2 mitigation in China: A provincial leveled analysis," Applied Energy, Elsevier, vol. 144(C), pages 165-174.
    4. Raya Muttarak & Thanyaporn Chankrajang, 2015. "Who is concerned about and takes action on climate change? Gender and education divides among Thais," Vienna Yearbook of Population Research, Vienna Institute of Demography (VID) of the Austrian Academy of Sciences in Vienna, vol. 13(1), pages 193-220.
    5. Mrkajic, Vladimir & Vukelic, Djordje & Mihajlov, Andjelka, 2015. "Reduction of CO2 emission and non-environmental co-benefits of bicycle infrastructure provision: the case of the University of Novi Sad, Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 232-242.
    6. Lorenza Pistore & Francesca Tintinaglia & Roberta Pernetti & Pietro Stivanello & Wilmer Pasut, 2023. "Indirect Effects of High-Performance Buildings at Household and Community Level: A Systematic Literature Review," Energies, MDPI, vol. 16(5), pages 1-19, March.
    7. Rupu Yang & Min Wang & Mengxue Zhao & Xiangzhao Feng, 2022. "Synergic Benefits of Air Pollutant Reduction, CO 2 Emission Abatement, and Water Saving under the Goal of Achieving Carbon Emission Peak: The Case of Tangshan City, China," IJERPH, MDPI, vol. 19(12), pages 1-24, June.
    8. Alam Hossain Mondal, Md. & Mathur, Jyotirmay & Denich, Manfred, 2011. "Impacts of CO2 emission constraints on technology selection and energy resources for power generation in Bangladesh," Energy Policy, Elsevier, vol. 39(4), pages 2043-2050, April.
    9. Farooq, Muhammad Khalid & Kumar, S. & Shrestha, Ram M., 2013. "Energy, environmental and economic effects of Renewable Portfolio Standards (RPS) in a Developing Country," Energy Policy, Elsevier, vol. 62(C), pages 989-1001.
    10. Yang Shen & Zhihong Yang, 2023. "Chasing Green: The Synergistic Effect of Industrial Intelligence on Pollution Control and Carbon Reduction and Its Mechanisms," Sustainability, MDPI, vol. 15(8), pages 1-22, April.
    11. Po Kou & Ying Han & Xiaoyuan Qi & Yuanxian Li, 2022. "Does China's policy of carbon emission trading deliver sulfur dioxide reduction co-benefits?," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 6224-6245, May.
    12. Mondal, Md. Alam Hossain & Denich, Manfred & Vlek, Paul L.G., 2010. "The future choice of technologies and co-benefits of CO2 emission reduction in Bangladesh power sector," Energy, Elsevier, vol. 35(12), pages 4902-4909.
    13. Hui Li & Xianchun Tan & Jianxin Guo & Kaiwei Zhu & Chen Huang, 2019. "Study on an Implementation Scheme of Synergistic Emission Reduction of CO 2 and Air Pollutants in China’s Steel Industry," Sustainability, MDPI, vol. 11(2), pages 1-22, January.
    14. Thepkhun, Panida & Limmeechokchai, Bundit & Fujimori, Shinichiro & Masui, Toshihiko & Shrestha, Ram M., 2013. "Thailand's Low-Carbon Scenario 2050: The AIM/CGE analyses of CO2 mitigation measures," Energy Policy, Elsevier, vol. 62(C), pages 561-572.
    15. Mondal, Md. Alam Hossain & Hawila, Diala & Kennedy, Scott & Mezher, Toufic, 2016. "The GCC countries RE-readiness: Strengths and gaps for development of renewable energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1114-1128.
    16. Chankrajang, Thanyaporn & Muttarak, Raya, 2017. "Green Returns to Education: Does Schooling Contribute to Pro-Environmental Behaviours? Evidence from Thailand," Ecological Economics, Elsevier, vol. 131(C), pages 434-448.
    17. Gu, Gaoxiang & Wang, Zheng, 2018. "China’s carbon emissions abatement under industrial restructuring by investment restriction," Structural Change and Economic Dynamics, Elsevier, vol. 47(C), pages 133-144.
    18. Ali, Ghaffar & Abbas, Sawaid & Mueen Qamer, Faisal, 2013. "How effectively low carbon society development models contribute to climate change mitigation and adaptation action plans in Asia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 632-638.
    19. Wan, Panbing & Zhang, ZhongXiang & Chen, Lin, 2024. "Environmental co-benefits of climate mitigation: Evidence from clean development mechanism projects in China," China Economic Review, Elsevier, vol. 85(C).
    20. Jiang, Keyang & Zhou, Ying & Zhang, Zhihui & Chen, Shaoqing & Qiu, Rongliang, 2024. "Simulating the economic and health impacts of synergistic emission reduction from accelerated energy transition in Guangdong-Hong Kong-Macao Greater Bay Area between 2020 and 2050," Applied Energy, Elsevier, vol. 364(C).
    21. Xi Xie & Yuwei Weng & Wenjia Cai, 2018. "Co-Benefits of CO 2 Mitigation for NO X Emission Reduction: A Research Based on the DICE Model," Sustainability, MDPI, vol. 10(4), pages 1-18, April.
    22. Eto, R. & Murata, A. & Uchiyama, Y. & Okajima, K., 2013. "Co-benefits of including CCS projects in the CDM in India's power sector," Energy Policy, Elsevier, vol. 58(C), pages 260-268.
    23. Shuo Gao & Ping Jiang, 2020. "Detecting and understanding co-benefits generated in tackling climate change and environmental degradation in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4589-4618, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shrestha, Ram M. & Malla, Sunil & Liyanage, Migara H., 2007. "Scenario-based analyses of energy system development and its environmental implications in Thailand," Energy Policy, Elsevier, vol. 35(6), pages 3179-3193, June.
    2. Sk Uddin & Ros Taplin & Xiaojiang Yu, 2010. "Towards a sustainable energy future—exploring current barriers and potential solutions in Thailand," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(1), pages 63-87, February.
    3. Phdungsilp, Aumnad & Wuttipornpun, Teeradej, 2013. "Analyses of the decarbonizing Thailand's energy system toward low-carbon futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 187-197.
    4. Shree Shakya & S. Kumar & Ram Shrestha, 2012. "Co-benefits of a carbon tax in Nepal," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(1), pages 77-101, January.
    5. Watcharejyothin, Mayurachat & Shrestha, Ram M., 2009. "Regional energy resource development and energy security under CO2 emission constraint in the greater Mekong sub-region countries (GMS)," Energy Policy, Elsevier, vol. 37(11), pages 4428-4441, November.
    6. Saelim, Supawan, 2019. "Carbon tax incidence on household consumption: Heterogeneity across socio-economic factors in Thailand," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 159-174.
    7. Nakawiro, Thanawat & Bhattacharyya, Subhes C., 2007. "High gas dependence for power generation in Thailand: The vulnerability analysis," Energy Policy, Elsevier, vol. 35(6), pages 3335-3346, June.
    8. Nakawiro, Thanawat & Bhattacharyya, Subhes C. & Limmeechokchai, Bundit, 2008. "Expanding electricity capacity in Thailand to meet the twin challenges of supply security and environmental protection," Energy Policy, Elsevier, vol. 36(6), pages 2265-2278, June.
    9. Zhang, Chao & Wen, Zongguo & Chen, Jining, 2009. "An integrated model for technology forecasting to reduce pollutant emission in China's pulp industry," Resources, Conservation & Recycling, Elsevier, vol. 54(1), pages 62-72.
    10. Shukla, Priyadarshi R. & Chaturvedi, Vaibhav, 2012. "Low carbon and clean energy scenarios for India: Analysis of targets approach," Energy Economics, Elsevier, vol. 34(S3), pages 487-495.
    11. Shivika Mittal & Jing-Yu Liu & Shinichiro Fujimori & Priyadarshi Ramprasad Shukla, 2018. "An Assessment of Near-to-Mid-Term Economic Impacts and Energy Transitions under “2 °C” and “1.5 °C” Scenarios for India," Energies, MDPI, vol. 11(9), pages 1-17, August.
    12. Selvakkumaran, Sujeetha & Limmeechokchai, Bundit, 2015. "Low carbon society scenario analysis of transport sector of an emerging economy—The AIM/Enduse modelling approach," Energy Policy, Elsevier, vol. 81(C), pages 199-214.
    13. Hasan, M.H. & Mahlia, T.M.I. & Nur, Hadi, 2012. "A review on energy scenario and sustainable energy in Indonesia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2316-2328.
    14. Janthana Kunchornrat & Aumnad Phdungsilp, 2012. "Multi-Level Governance of Low-Carbon Energy Systems in Thailand," Energies, MDPI, vol. 5(3), pages 1-14, February.
    15. Nuwong Chollacoop & Peerawat Saisirirat & Tuenjai Fukuda & Atsushi Fukuda, 2011. "Scenario Analyses of Road Transport Energy Demand: A Case Study of Ethanol as a Diesel Substitute in Thailand," Energies, MDPI, vol. 4(1), pages 1-18, January.
    16. Silalertruksa, Thapat & Gheewala, Shabbir H., 2010. "Security of feedstocks supply for future bio-ethanol production in Thailand," Energy Policy, Elsevier, vol. 38(11), pages 7476-7486, November.
    17. Nakawiro, Thanawat & Bhattacharyya, Subhes C. & Limmeechokchai, Bundit, 2008. "Electricity capacity expansion in Thailand: An analysis of gas dependence and fuel import reliance," Energy, Elsevier, vol. 33(5), pages 712-723.
    18. Chiu, Chien-Liang & Chang, Ting-Huan, 2009. "What proportion of renewable energy supplies is needed to initially mitigate CO2 emissions in OECD member countries?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1669-1674, August.
    19. Hughes, Larry, 2010. "Meeting residential space heating demand with wind-generated electricity," Renewable Energy, Elsevier, vol. 35(8), pages 1765-1772.
    20. Parnphumeesup, Piya & Kerr, Sandy A., 2011. "Stakeholder preferences towards the sustainable development of CDM projects: Lessons from biomass (rice husk) CDM project in Thailand," Energy Policy, Elsevier, vol. 39(6), pages 3591-3601, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:5:p:2586-2597. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.